Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 161 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Bài 1 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1 trang 161, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Một công ty bảo hiểm thống kê lại độ tuổi các khách hàng mua bảo hiểm xe ô tô ở bảng sau: Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.

Đề bài

Một công ty bảo hiểm thống kê lại độ tuổi các khách hàng mua bảo hiểm xe ô tô ở bảng sau:

Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

+ Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:

Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1 3

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).

+ Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)

Lời giải chi tiết

Bảng tần số ghép nhóm gồm các giá trị đại diện của nhóm là:

Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1 4

Cỡ mẫu \(n = 233\)

Số trung bình của mẫu số liệu là:

\(\overline x = \frac{{27,5.25 + 32,5.38 + 37,5.62 + 42,5.42 + 47,5.37 + 52,5.29}}{{233}} \approx 39,97\)

Nhóm chứa mốt của mẫu số liệu là \(\left[ {35;40} \right)\).

Do đó, \({u_m} = 35,{n_{m - 1}} = 38,{n_m} = 62,{n_{m + 1}} = 42,{u_{m + 1}} - {u_m} = 40 - 35 = 5\)

Mốt của mẫu số liệu là: \({M_O} = 35 + \frac{{62 - 38}}{{\left( {62 - 38} \right) + \left( {62 - 42} \right)}}.5 = \frac{{415}}{{11}}\)

Gọi \({x_1},{x_2},...,{x_{233}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{25}} \in \left[ {25;30} \right),{x_{26}},...,{x_{63}} \in \left[ {30;35} \right),{x_{64}},...,{x_{125}} \in \left[ {35;40} \right),{x_{126}},...,{x_{167}} \in \left[ {40;45} \right),\)

\({x_{168}},...,{x_{204}} \in \left[ {45;50} \right),{x_{205}},...,{x_{233}} \in \left[ {50;55} \right)\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ hai của mẫu số liệu là \({x_{117}}\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {35;40} \right)\).

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:

\({Q_2} = 35 + \frac{{\frac{{233}}{2} - \left( {25 + 38} \right)}}{{62}}.\left( {40 - 35} \right) = \frac{{4\;875}}{{124}}\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{58}} + {x_{59}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {30;35} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 30 + \frac{{\frac{{233}}{4} - 25}}{{38}}.\left( {35 - 30} \right) = \frac{{275}}{8}\)

Do cỡ mẫu \(n = 233\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{175}} + {x_{176}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {45;50} \right)\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 45 + \frac{{\frac{{3.233}}{4} - \left( {25 + 38 + 62 + 42} \right)}}{{37}}.\left( {50 - 45} \right) = \frac{{6\;815}}{{148}}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 161 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 1 trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 tập trung vào việc ứng dụng kiến thức về dãy số, đặc biệt là cấp số cộng và cấp số nhân, vào các bài toán thực tế. Mục tiêu chính là giúp học sinh củng cố lý thuyết và phát triển kỹ năng giải quyết vấn đề.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Xác định dãy số: Cho một dãy số, yêu cầu xác định xem đó có phải là cấp số cộng hay cấp số nhân hay không.
  • Tìm số hạng tổng quát: Tìm công thức tổng quát để tính số hạng thứ n của một cấp số cộng hoặc cấp số nhân.
  • Tính tổng các số hạng: Tính tổng n số hạng đầu tiên của một cấp số cộng hoặc cấp số nhân.
  • Ứng dụng vào thực tế: Giải các bài toán liên quan đến các tình huống thực tế, ví dụ như tính số tiền lãi sau một số kỳ hạn, tính số lượng sản phẩm tăng trưởng theo thời gian.

Phương pháp giải bài tập

Để giải bài 1 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa cấp số cộng: Một dãy số được gọi là cấp số cộng nếu hiệu giữa hai số hạng liên tiếp là một hằng số.
  2. Định nghĩa cấp số nhân: Một dãy số được gọi là cấp số nhân nếu thương giữa hai số hạng liên tiếp là một hằng số.
  3. Công thức số hạng tổng quát của cấp số cộng: un = u1 + (n - 1)d, trong đó u1 là số hạng đầu tiên, d là công sai.
  4. Công thức số hạng tổng quát của cấp số nhân: un = u1qn-1, trong đó u1 là số hạng đầu tiên, q là công bội.
  5. Công thức tính tổng n số hạng đầu tiên của cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2[2u1 + (n - 1)d].
  6. Công thức tính tổng n số hạng đầu tiên của cấp số nhân: Sn = u1(1 - qn)/(1 - q) (với q ≠ 1).

Ví dụ minh họa

Bài toán: Cho cấp số cộng có số hạng đầu u1 = 2 và công sai d = 3. Tính số hạng thứ 5 và tổng 5 số hạng đầu tiên của cấp số cộng này.

Giải:

  • Số hạng thứ 5: u5 = u1 + (5 - 1)d = 2 + 4 * 3 = 14.
  • Tổng 5 số hạng đầu tiên: S5 = 5/2(u1 + u5) = 5/2(2 + 14) = 40.

Lưu ý khi giải bài tập

Khi giải bài tập về cấp số cộng và cấp số nhân, bạn cần chú ý:

  • Xác định đúng số hạng đầu tiên, công sai hoặc công bội.
  • Sử dụng đúng công thức để tính số hạng tổng quát và tổng các số hạng.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải thêm các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 hoặc các đề thi thử Toán 11.

Kết luận

Bài 1 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh nắm vững kiến thức về dãy số, cấp số cộng và cấp số nhân. Bằng cách nắm vững các công thức và phương pháp giải, bạn có thể tự tin giải quyết các bài toán liên quan.

Tài liệu, đề thi và đáp án Toán 11