Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 14 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tính các giá trị lượng giác của góc \(\alpha \), nếu: a) \(\sin \alpha = - \frac{4}{5}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\); b) \(\cos \alpha = \frac{{11}}{{61}}\) và \(0 < \alpha < \frac{\pi }{2}\); c) \(\tan \alpha = - \frac{{15}}{8}\) và \( - {90^0} < \alpha < {90^0}\); d) \(\cot \alpha = - 2,4\) và \( - {180^0} < \alpha < {0^0}\).
Đề bài
Tính các giá trị lượng giác của góc \(\alpha \), nếu:
a) \(\sin \alpha = - \frac{4}{5}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\);
b) \(\cos \alpha = \frac{{11}}{{61}}\) và \(0 < \alpha < \frac{\pi }{2}\);
c) \(\tan \alpha = - \frac{{15}}{8}\) và \( - {90^0} < \alpha < {90^0}\);
d) \(\cot \alpha = - 2,4\) và \( - {180^0} < \alpha < {0^0}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc để tính:
a, b) \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }}\), \(\cot \alpha \) \( = \frac{1}{{\tan \alpha }}\)
c) \(\frac{1}{{{{\cos }^2}\alpha }} \) \( = 1 + {\tan ^2}\alpha \), \(\sin \alpha \) \( = \tan \alpha .\cos \alpha \), \(\cot \alpha \) \( = \frac{1}{{\tan \alpha }}\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} \) \( = 1 + {\cot ^2}\alpha \), \(\cos \alpha \) \( = \cot \alpha .\sin \alpha \),\(\tan \alpha \) \( = \frac{1}{{\cot \alpha }}\)
Lời giải chi tiết
a) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1 \Rightarrow \cos \alpha \) \( = \pm \sqrt {1 - {{\sin }^2}\alpha } \) \( = \pm \sqrt {1 - {{\left( {\frac{{ - 4}}{5}} \right)}^2}} \) \( = \pm \frac{3}{5}\)
Mà \(\pi < \alpha < \frac{{3\pi }}{2}\) nên \(\cos \alpha < 0\).
Do đó, \(\cos \alpha \) \( = - \frac{3}{5}\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }} \) \( = \frac{{\frac{{ - 4}}{5}}}{{\frac{{ - 3}}{5}}} \) \( = \frac{4}{3},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{3}{4}\)
b) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha \) \( = 1 \Rightarrow \sin \alpha \) \( = \pm \sqrt {1 - {{\cos }^2}\alpha } \) \( = \pm \sqrt {1 - {{\left( {\frac{{11}}{{61}}} \right)}^2}} \) \( = \pm \frac{{60}}{{61}}\)
Mà \(0 < \alpha < \frac{\pi }{2}\) nên \(\sin \alpha > 0\).
Do đó, \(\sin \alpha \) \( = \frac{{60}}{{61}}\), \(\tan \alpha \) \( = \frac{{\sin \alpha }}{{\cos \alpha }} \) \( = \frac{{\frac{{60}}{{61}}}}{{\frac{{11}}{{61}}}} \) \( = \frac{{60}}{{11}},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{{11}}{{60}}\)
c) Ta có: \(\frac{1}{{{{\cos }^2}\alpha }} \) \( = 1 + {\tan ^2}\alpha \) \( = 1 + {\left( {\frac{{ - 15}}{8}} \right)^2} \) \( = \frac{{289}}{{64}} \Rightarrow \frac{1}{{\cos \alpha }} \) \( = \pm \frac{{17}}{8}\)
Mà \( - {90^0} < \alpha < {90^0}\) nên \(\cos \alpha > 0,\sin \alpha < 0\).
Do đó, \(\cos \alpha \) \( = \frac{8}{{17}},\cot \alpha \) \( = \frac{1}{{\tan \alpha }} \) \( = \frac{{ - 8}}{{15}},\sin \alpha \) \( = \tan \alpha .\cos \alpha \) \( = \frac{{ - 15}}{{17}}\).
d) Ta có: \(\frac{1}{{{{\sin }^2}\alpha }} \) \( = 1 + {\cot ^2}\alpha \) \( = 1 + {\left( { - 2,4} \right)^2} \) \( = \frac{{169}}{{25}} \Rightarrow \frac{1}{{\sin \alpha }} \) \( = \pm \frac{{13}}{5}\)
Mà \( - {180^0} < \alpha < {0^0}\) nên \(\cos \alpha > 0,\sin \alpha < 0\).
Do đó, \(\sin \alpha \) \( = - \frac{5}{{13}},\tan \alpha \) \( = \frac{1}{{\cot \alpha }} \) \( = \frac{{ - 5}}{{12}},\cos \alpha \) \( = \cot \alpha .\sin \alpha \) \( = \frac{{12}}{{13}}\).
Bài 1 trang 14 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm này là nền tảng quan trọng để hiểu sâu hơn về hàm số bậc hai và các ứng dụng của nó trong thực tế.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài tập này một cách hiệu quả, bạn cần:
Giả sử hàm số bậc hai được cho bởi: y = x2 - 4x + 3
a = 1, b = -4, c = 3
xđỉnh = -(-4)/(2*1) = 2
yđỉnh = (4*1*3 - (-4)2)/(4*1) = (12 - 16)/4 = -1
Vậy tọa độ đỉnh của parabol là (2, -1)
x = 2
Giải phương trình: x2 - 4x + 3 = 0
Δ = (-4)2 - 4*1*3 = 16 - 12 = 4
x1 = (4 + √4)/(2*1) = 3
x2 = (4 - √4)/(2*1) = 1
Vậy parabol cắt trục hoành tại hai điểm (1, 0) và (3, 0)
Dựa vào các thông tin đã tính toán, bạn có thể vẽ đồ thị hàm số y = x2 - 4x + 3.
Khi giải bài tập về hàm số bậc hai, bạn cần chú ý đến dấu của hệ số a để xác định chiều mở của parabol (lên trên nếu a > 0, xuống dưới nếu a < 0). Ngoài ra, việc kiểm tra lại kết quả tính toán là rất quan trọng để đảm bảo tính chính xác.
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Hãy áp dụng các phương pháp đã học để giải quyết các bài toán khác nhau và nâng cao kỹ năng giải toán của mình.
Bài 1 trang 14 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc hai và các ứng dụng của nó. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.