Bài 6 trang 76 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Bài tập này thường yêu cầu học sinh phải nắm vững các kiến thức về quy tắc tính đạo hàm, điều kiện cực trị và cách xác định điểm cực trị.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6 trang 76 sách bài tập Toán 11 Chân trời sáng tạo tập 1, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tìm các giới hạn sau: a) \(\lim \left( {1 + 3n - {n^2}} \right)\); b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\); c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right)\); d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\).
Đề bài
Tìm các giới hạn sau:
a) \(\lim \left( {1 + 3n - {n^2}} \right)\);
b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}}\);
c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right)\);
d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giới hạn vô cực để tính: Giả sử \(\lim {u_n} = + \infty \) và \(\lim {v_n} = a\)
Nếu \(a > 0\) thì \(\lim {u_n}{v_n} = + \infty \).
Nếu \(a < 0\) thì \(\lim {u_n}{v_n} = - \infty \).
Lời giải chi tiết
a) \(\lim \left( {1 + 3n - {n^2}} \right) = \lim \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right)} \right]\)
Ta có: \(\lim {n^2} = + \infty ,\lim \left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right) = - 1 < 0\).
Do đó, \(\lim \left( {1 + 3n - {n^2}} \right) = \lim {n^2}\left( {\frac{1}{{{n^2}}} + \frac{3}{n} - 1} \right) = - \infty \)
b) \(\lim \frac{{{n^3} + 3n}}{{2n - 1}} = \lim \left[ {{n^2}.\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}}} \right]\)
Ta có: \(\lim {n^2} = + \infty ,\lim \left( {\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}}} \right) = \frac{1}{2} > 0\)
Do đó, \(\lim \frac{{{n^3} + 3n}}{{2n - 1}} = \lim {n^2}\frac{{1 + \frac{3}{{{n^2}}}}}{{2 - \frac{1}{n}}} = + \infty \)
c) \(\lim \left( {\sqrt {{n^2} - n} + n} \right) = \lim \left[ {n\left( {\sqrt {1 - \frac{1}{n}} + 1} \right)} \right]\)
Ta có: \(\lim n = + \infty ,\lim \left( {\sqrt {1 - \frac{1}{n}} + 1} \right) = 2 > 0\)
Do đó, \(\lim \left( {\sqrt {{n^2} - n} + n} \right) = \lim \left[ {n\left( {\sqrt {1 - \frac{1}{n}} + 1} \right)} \right] = + \infty \)
d) \(\lim \left( {{3^{n + 1}} - {5^n}} \right) = \lim \left\{ {{5^n}\left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right]} \right\}\)
Ta có: \(\lim {5^n} = + \infty ,\lim \left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right] = 3.0 - 1 = - 1 < 0\)
Do đó, \(\lim \left( {{3^{n + 1}} - {5^n}} \right) = \lim \left\{ {{5^n}\left[ {3.{{\left( {\frac{3}{5}} \right)}^n} - 1} \right]} \right\} = - \infty \)
Bài 6 trang 76 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Nội dung bài tập: Bài 6 thường yêu cầu học sinh tìm cực trị của một hàm số cho trước. Để làm được điều này, học sinh cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số f(x) = x3 - 3x2 + 2. Để tìm cực trị của hàm số này, ta thực hiện các bước sau:
Lưu ý:
Bài tập tương tự: Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, học sinh có thể tham khảo các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 và các tài liệu học tập khác.
Giaitoan.edu.vn hy vọng với lời giải chi tiết và dễ hiểu trên, các em học sinh sẽ tự tin hơn trong việc giải bài tập Toán 11 và đạt kết quả tốt trong học tập. Chúc các em học tốt!
Các chủ đề liên quan: