Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 62 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Một hộp đèn treo trần có hình dạng lăng trụ đứng lục giác đều (Hình 15), cạnh đáy bằng 10cm và cạnh bên bằng 50cm. Tính tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn.
Đề bài
Một hộp đèn treo trần có hình dạng lăng trụ đứng lục giác đều (Hình 15), cạnh đáy bằng 10cm và cạnh bên bằng 50cm. Tính tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về diện tích xung quanh hình lăng trụ đứng: Diện tích xung quanh hình lăng trụ đứng bằng chu vi đáy nhân chiều cao.
Lời giải chi tiết
Diện tích xung quanh của hình lăng trụ đứng là: \({S_{xq}} = 50.6.10 = 3000\left( {c{m^2}} \right)\)
Hình lăng trụ lục giác đứng lục giác đều có đáy là lục giác đều.
Chia lục giác đều thành 6 tam giác đều như hình vẽ:
Diện tích một tam giác đều là: \(\frac{{{{10}^2}\sqrt 3 }}{4}\left( {c{m^2}} \right)\)
Diện tích đáy hình lăng trụ đứng lục giác đều là: \({S_{đáy}} = 6.\frac{{{{10}^2}\sqrt 3 }}{4} = 150\sqrt 3 \left( {c{m^2}} \right)\)
Vậy tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn là: \(\frac{{3000}}{{150\sqrt 3 }} = \frac{{20\sqrt 3 }}{3}\)
Bài 7 trang 62 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, và các hàm số hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài 7 trang 62 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(2x).
Giải:
g'(x) = d/dx (sin(2x))
g'(x) = cos(2x) * d/dx (2x) (Sử dụng quy tắc chuỗi)
g'(x) = 2cos(2x)
Khi giải bài tập về đạo hàm, bạn cần chú ý đến các điểm sau:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến hoặc tham gia các khóa học luyện thi Toán 11 để được hướng dẫn và giải đáp thắc mắc.
Bài 7 trang 62 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và giải bài tập.
Quy tắc | Công thức |
---|---|
Đạo hàm của hàm số lũy thừa | (xn)' = nxn-1 |
Đạo hàm của hàm số lượng giác (sin x) | (sin x)' = cos x |
Đạo hàm của hàm số lượng giác (cos x) | (cos x)' = -sin x |