Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tìm các giới hạn sau: a) (lim frac{{nleft( {2{n^2} + 3} right)}}{{4{n^3} + 1}}); b) (lim left[ {sqrt n left( {sqrt {n + 5} - sqrt {n + 1} } right)} right]).

Đề bài

Tìm các giới hạn sau:

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)

Lời giải chi tiết

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}} = \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{4 + \frac{1}{{{n^3}}}}} = \frac{{2 + \lim \frac{3}{{{n^2}}}}}{{4 + \lim \frac{1}{{{n^3}}}}} = \frac{1}{2}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)} \right] = \lim \frac{{\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)\left( {\sqrt {n + 5} + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 5} + \sqrt {n + 1} } \right)}}\)

\( = \lim \frac{{4\sqrt n }}{{\sqrt {n + 5} + \sqrt {n + 1} }} = \lim \frac{4}{{\sqrt {1 + \frac{5}{n}} + \sqrt {1 + \frac{1}{n}} }} = \frac{4}{{\sqrt {1 + \lim \frac{5}{n}} + \sqrt {1 + \lim \frac{1}{n}} }} = \frac{4}{{1 + 1}} = 2\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số lượng giác. Việc nắm vững các kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Học sinh cần xác định các giá trị của x sao cho biểu thức trong hàm số có nghĩa.
  • Tìm tập giá trị của hàm số lượng giác: Học sinh cần xác định khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Học sinh cần xác định khoảng đồng biến, nghịch biến, cực đại, cực tiểu của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Học sinh cần vẽ đồ thị của hàm số dựa trên các tính chất đã khảo sát.

Phương pháp giải bài tập

Để giải bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 hiệu quả, học sinh cần:

  1. Nắm vững định nghĩa, tính chất của hàm số lượng giác: Đây là nền tảng cơ bản để giải quyết mọi bài toán.
  2. Sử dụng các công thức lượng giác: Các công thức lượng giác giúp đơn giản hóa biểu thức và tìm ra lời giải.
  3. Phân tích bài toán: Xác định rõ yêu cầu của bài toán và các dữ kiện đã cho.
  4. Lựa chọn phương pháp giải phù hợp: Tùy thuộc vào từng dạng bài tập, học sinh cần lựa chọn phương pháp giải phù hợp.
  5. Kiểm tra lại kết quả: Sau khi giải xong, học sinh cần kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài toán: Xác định tập xác định của hàm số y = tan(2x + π/3).

Lời giải:

Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên.

Suy ra 2x ≠ π/2 + kπ - π/3 = π/6 + kπ.

Vậy x ≠ π/12 + kπ/2, với k là số nguyên.

Kết luận: Tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số lượng giác, học sinh cần lưu ý:

  • Đơn vị góc: Đảm bảo sử dụng đúng đơn vị góc (độ hoặc radian).
  • Giá trị đặc biệt: Nắm vững các giá trị lượng giác của các góc đặc biệt (0, π/6, π/4, π/3, π/2, π...).
  • Tính tuần hoàn: Hàm số lượng giác có tính tuần hoàn, do đó có thể sử dụng tính chất này để đơn giản hóa bài toán.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, học sinh có thể tự giải các bài tập sau:

  • Bài 2 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1
  • Bài 3 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1
  • Các bài tập tương tự trong các nguồn tài liệu khác.

Kết luận

Bài 1 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Bằng cách nắm vững các kiến thức cơ bản, áp dụng các phương pháp giải phù hợp và luyện tập thường xuyên, học sinh có thể tự tin giải quyết bài tập này và đạt kết quả tốt trong học tập.

Tài liệu, đề thi và đáp án Toán 11