Bài 5 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất của dãy số để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 58, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau: a) \({u_n} = \frac{{2n - 13}}{{3n - 2}}\); b) \({u_n} = \frac{{{n^2} + 3n + 1}}{{n + 1}}\); c) \({u_n} = \frac{1}{{\sqrt {1 + n + {n^2}} }}\).
Đề bài
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau:
a) \({u_n} = \frac{{2n - 13}}{{3n - 2}}\);
b) \({u_n} = \frac{{{n^2} + 3n + 1}}{{n + 1}}\);
c) \({u_n} = \frac{1}{{\sqrt {1 + n + {n^2}} }}\).
Phương pháp giải - Xem chi tiết
* Sử dụng kiến thức về dãy số tăng, giảm để xét tính tăng giảm của dãy số: Cho dãy số \(\left( {{u_n}} \right)\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n},\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n},\forall n \in \mathbb{N}*\).
* Sử dụng kiến thức về dãy bị chặn để xét tính bị chặn của dãy số:
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M,\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn dưới nếu tồn tại một số m sao cho \({u_n} \ge m,\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, nghĩa là tồn tại các số M và m sao cho \(m \le {u_n} \le M,\forall n \in \mathbb{N}*\).
Lời giải chi tiết
a) \({u_{n + 1}} - {u_n} = \frac{{2\left( {n + 1} \right) - 13}}{{3\left( {n + 1} \right) - 2}} - \frac{{2n - 13}}{{3n - 2}}\)\( = \frac{{2n - 11}}{{3n + 1}} - \frac{{2n - 13}}{{3n - 2}}\)\( = \frac{{35}}{{\left( {3n + 1} \right)\left( {3n - 2} \right)}} > 0\forall n \in \mathbb{N}*\)
Do đó, \({u_{n + 1}} > {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Lại có: \({u_n} = \frac{{2n - 13}}{{3n - 2}} = \frac{2}{3} - \frac{{35}}{{3\left( {3n - 2} \right)}}\), suy ra: \( - 11 \le {u_n} < \frac{2}{3}\forall n \in \mathbb{N}*\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn.
b) Ta có: \({u_{n + 1}} - {u_n} = \frac{{{{\left( {n + 1} \right)}^2} + 3\left( {n + 1} \right) + 1}}{{n + 1 + 1}} - \frac{{{n^2} + 3n + 1}}{{n + 1}}\)\( = \frac{{{n^2} + 5n + 5}}{{n + 2}} - \frac{{{n^2} + 3n + 1}}{{n + 1}}\)
\( = \frac{{\left( {{n^2} + 5n + 5} \right)\left( {n + 1} \right) - \left( {{n^2} + 3n + 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\)\( = \frac{{{n^2} + 3n + 3}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} > 0\forall n \in \mathbb{N}*\)
Do đó, \({u_{n + 1}} > {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Lại có: \({u_n} = \frac{{{n^2} + 3n + 1}}{{n + 1}} > \frac{{{n^2} + 2n + 1}}{{n + 1}} = n + 1 \ge 2\forall n \in \mathbb{N}*\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn dưới.
c) Ta có: \({u_n} > 0\forall n \in \mathbb{N}*\)
Do đó, \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{1}{{\sqrt {1 + \left( {n + 1} \right) + {{\left( {n + 1} \right)}^2}} }}}}{{\frac{1}{{\sqrt {1 + n + {n^2}} }}}}\)\( = \sqrt {\frac{{1 + n + {n^2}}}{{{n^2} + 3n + 3}}} < 1\forall n \in \mathbb{N}*\)
Do đó, \({u_{n + 1}} < {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
Lại có: \(n \ge 1,{n^2} \ge 1\;\forall n \in \mathbb{N}*\)\( \Rightarrow {n^2} + n + 1 \ge 3\;\forall n \in \mathbb{N}*\)\( \Rightarrow \frac{1}{{\sqrt {{n^2} + n + 1} }} \le \frac{1}{3}\;\forall n \in \mathbb{N}*\)
Do đó, \(0 < \frac{1}{{\sqrt {1 + n + {n^2}} }} \le \frac{1}{{\sqrt 3 }}\forall n \in \mathbb{N}*\). Do đó, \(\left( {{u_n}} \right)\) là dãy số bị chặn.
Bài 5 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về dãy số, cấp số cộng và cấp số nhân. Bài tập này thường yêu cầu học sinh áp dụng các kiến thức đã học để giải quyết các bài toán liên quan đến việc tìm số hạng tổng quát, tính tổng của dãy số, và xác định các yếu tố của cấp số cộng và cấp số nhân.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài tập 5 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Cho cấp số cộng có số hạng đầu u1 = 2 và công sai d = 3. Tìm số hạng thứ 5 của cấp số cộng.
Giải: Số hạng thứ n của cấp số cộng được tính theo công thức: un = u1 + (n - 1)d. Vậy, số hạng thứ 5 của cấp số cộng là: u5 = 2 + (5 - 1) * 3 = 2 + 12 = 14.
(Phần này sẽ chứa lời giải chi tiết cho từng câu hỏi của bài 5 trang 58, được trình bày rõ ràng, dễ hiểu, kèm theo các bước giải thích cụ thể.)
Để học tốt môn Toán 11, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 5 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về dãy số, cấp số cộng và cấp số nhân. Hy vọng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập và đạt kết quả tốt trong môn Toán.