Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 25 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 25 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Biết rằng (a = {10^x},b = {10^y}). Hãy biểu thị biểu thức (A = {log _{{a^2}}}sqrt[3]{b}) theo x và y.

Đề bài

Biết rằng \(a = {10^x},b = {10^y}\). Hãy biểu thị biểu thức \(A = {\log _{{a^2}}}\sqrt[3]{b}\) theo x và y.

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,N > 0,N \ne 1\) ta có: \({\log _a}N = \frac{1}{{{{\log }_N}a}}\); \({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha \in \mathbb{R}} \right)\), \({\log _{{a^\alpha }}}M = \frac{1}{\alpha }{\log _a}M\left( {\alpha \ne 0} \right)\)

Lời giải chi tiết

\(A \) \( = {\log _{{a^2}}}\sqrt[3]{b} \) \( = {\log _{{{\left( {{{10}^x}} \right)}^2}}}\sqrt[3]{{{{10}^y}}} \) \( = {\log _{{{10}^{2x}}}}{10^{\frac{y}{3}}} \) \( = \frac{y}{3}.\frac{1}{{2x}}.{\log _{10}}10 \) \( = \frac{y}{{6x}}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 25 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 3 trang 25 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải bài tập này.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của hàm số lượng giác: Tìm tập xác định, tập giá trị, chu kỳ, tính đối xứng, và các điểm đặc biệt của hàm số.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các kiến thức về biến đổi đồ thị để vẽ đồ thị của hàm số.
  • Giải phương trình lượng giác: Vận dụng các công thức lượng giác và các phương pháp giải phương trình để tìm nghiệm của phương trình.
  • Ứng dụng hàm số lượng giác vào thực tế: Giải các bài toán thực tế liên quan đến hàm số lượng giác.

Lời giải chi tiết bài 3 trang 25

Để giúp bạn hiểu rõ hơn về cách giải bài 3 trang 25, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi trong bài tập. Chúng tôi sẽ trình bày lời giải một cách rõ ràng, dễ hiểu, và có kèm theo các giải thích chi tiết để bạn có thể tự học và tự giải các bài tập tương tự.

Câu a: (Ví dụ minh họa)

Đề bài: Xác định tập xác định của hàm số y = tan(2x).

Lời giải: Hàm số y = tan(2x) xác định khi và chỉ khi 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2, k ∈ Z}.

Câu b: (Ví dụ minh họa)

Đề bài: Vẽ đồ thị hàm số y = sin(x + π/3).

Lời giải: Đồ thị hàm số y = sin(x + π/3) là đồ thị hàm số y = sin(x) dịch chuyển sang trái π/3 đơn vị. Để vẽ đồ thị, bạn có thể xác định các điểm đặc biệt trên đồ thị, chẳng hạn như điểm cực đại, điểm cực tiểu, và các điểm giao với trục hoành.

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức lượng giác là công cụ quan trọng để giải các bài tập liên quan đến hàm số lượng giác.
  • Sử dụng các phép biến đổi đồ thị: Các phép biến đổi đồ thị giúp bạn vẽ đồ thị của hàm số một cách nhanh chóng và chính xác.
  • Phân tích đề bài một cách cẩn thận: Trước khi bắt đầu giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài tập.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về hàm số lượng giác, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về hàm số lượng giác

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 3 trang 25 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11