Bài 2 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này.
Chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.
Các bạn học sinh một lớp thống kê số túi nhựa mà gia đình bạn đó sử dụng trong một tuần. Kết quả được tổng hợp lại ở bảng sau: a) Hãy ước lượng số trung bình và mốt của mẫu số liệu trên. b) Cô giáo dự định trao danh hiệu “Gia đình xanh” cho 25% gia đình các bạn sử dụng ít túi nhựa nhất. Cô nên trao danh hiệu cho các gia đình dùng không quá bao nhiêu túi nhựa?
Đề bài
Các bạn học sinh một lớp thống kê số túi nhựa mà gia đình bạn đó sử dụng trong một tuần. Kết quả được tổng hợp lại ở bảng sau:
a) Hãy ước lượng số trung bình và mốt của mẫu số liệu trên.
b) Cô giáo dự định trao danh hiệu “Gia đình xanh” cho 25% gia đình các bạn sử dụng ít túi nhựa nhất. Cô nên trao danh hiệu cho các gia đình dùng không quá bao nhiêu túi nhựa?
Phương pháp giải - Xem chi tiết
a) + Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:
Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:
Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).
+ Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
b) Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính: Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
Lời giải chi tiết
a) Ta hiệu chỉnh lại bảng số liệu bao gồm giá trị đại diện:
Cỡ mẫu \(n = 44\)
Số trung bình của mẫu số liệu là: \(\overline x = \frac{{7.8 + 12.15 + 17.12 + 22.7 + 27.2}}{{44}} = \frac{{162}}{{11}}\)
Nhóm chứa mốt của mẫu số liệu là \(\left[ {9,5;14,5} \right)\).
Do đó, \({u_m} = 9,5,{u_{m + 1}} = 14,5,{n_m} = 15,{n_{m + 1}} = 12,{n_{m - 1}} = 8,{u_{m + 1}} - {u_m} = 14,5 - 9,5 = 5\)
Mốt của mẫu số liệu là: \({M_O} = 9,5 + \frac{{15 - 8}}{{\left( {15 - 8} \right) + \left( {15 - 12} \right)}}.5 = 13\)
b) Gọi \({x_1},{x_2},...,{x_{44}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_8} \in \left[ {4,5;9,5} \right),{x_9},...,{x_{23}} \in \left[ {9,5;14,5} \right),{x_{24}},...,{x_{35}} \in \left[ {14,5;19,5} \right),\) \({x_{36}},...,{x_{42}} \in \left[ {19,5;24,5} \right),{x_{43}},{x_{44}} \in \left[ {24,5;29,5} \right)\)
Do cỡ mẫu \(n = 44\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{11}} + {x_{12}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {9,5;14,5} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 9,5 + \frac{{\frac{{44}}{4} - \left( {8 + 0} \right)}}{{15}}.\left( {14,5 - 9,5} \right) = 10,5\)
Vậy giáo viên nên trao danh hiệu cho các gia đình không dùng quá 10 túi nhựa.
Bài 2 trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Cụ thể, bài toán yêu cầu học sinh tìm đạo hàm, xét dấu đạo hàm và xác định các khoảng đơn điệu của hàm số. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 11.
Bài 2 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thường có dạng như sau: Cho hàm số y = f(x). Hãy tìm đạo hàm f'(x), xét dấu f'(x) và xác định các khoảng đơn điệu của hàm số.
Để giải bài toán này, học sinh cần thực hiện các bước sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 2 trong sách bài tập. Tuy nhiên, dựa trên cấu trúc chung của các bài tập trong sách, chúng ta có thể đưa ra một ví dụ minh họa:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2.
Việc giải bài 2 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 không chỉ giúp học sinh nắm vững kiến thức về đạo hàm mà còn có ứng dụng thực tế trong nhiều lĩnh vực, như:
Bài 2 trang 161 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Bằng cách thực hiện các bước giải một cách cẩn thận và hiểu rõ bản chất của bài toán, học sinh có thể tự tin giải quyết các bài tập tương tự và áp dụng kiến thức vào thực tế.