Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. a) \(BC \bot \left( {OAH} \right)\). b) H là trực tâm của \(\Delta ABC\). c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).

Đề bài

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Chứng minh rằng:

a) \(BC \bot \left( {OAH} \right)\).

b) H là trực tâm của \(\Delta ABC\).

c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về đường thẳng vuông góc với mặt phẳng:

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau trong \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).

+ Nếu đường thẳng d vuông góc với mặt phẳng \(\left( \alpha \right)\) thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng \(\left( \alpha \right)\).

Lời giải chi tiết

Giải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

a) Vì H là hình chiếu của O trên mặt phẳng (ABC) nên \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot BC\)

Vì \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {BOC} \right) \Rightarrow OA \bot BC\)

Ta có: \(OA \bot BC,OH \bot BC \Rightarrow BC \bot \left( {OAH} \right)\)

b) Vì \(BC \bot \left( {OAH} \right)\) nên \(BC \bot AH\) (1)

Vì \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot AC\)

Vì \(OA \bot OB,OB \bot OC \Rightarrow OB \bot \left( {AOC} \right) \Rightarrow OB \bot AC\)

Ta có: \(OB \bot AC,OH \bot AC \Rightarrow AC \bot \left( {OBH} \right) \Rightarrow AC \bot BH\) (2)

Mà H là giao điểm của BH và CH (3)

Từ (1), (2) và (3) ta có: H là trực tâm của \(\Delta ABC\).

c) Gọi D là giao điểm của AH và BC. Khi đó, \(OD \bot BC\)

Vì \(OA \bot \left( {BOC} \right) \Rightarrow OA \bot OD\)

Do đó, tam giác AOD vuông tại O. Mà OH là đường cao nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{D^2}}} + \frac{1}{{O{A^2}}}\)

Tam giác BOC vuông tại O, đường cao OD có: \(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)

Vậy \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định hệ số góc của tiếp tuyến của đồ thị hàm số tại một điểm.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 được định nghĩa là giới hạn của tỷ số \frac{f(x) - f(x_0)}{x - x_0}\ khi x tiến tới x0.
  2. Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp.
  3. Các đạo hàm cơ bản: Biết đạo hàm của các hàm số cơ bản như x^n, sin(x), cos(x), tan(x),...

Lời giải chi tiết bài 1 trang 76

Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài tập. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:

Ví dụ:

Tính đạo hàm của hàm số f(x) = x^2 + 3x - 2

Lời giải:

Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:

f'(x) = \frac{d}{dx}(x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(2)\

Sử dụng quy tắc tính đạo hàm của lũy thừa và hằng số, ta có:

f'(x) = 2x + 3 - 0 = 2x + 3\

Vậy, đạo hàm của hàm số f(x) = x^2 + 3x - 2f'(x) = 2x + 3.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Tính tốc độ thay đổi của các đại lượng vật lý.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 - Chân trời sáng tạo.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.

Kết luận

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11