Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. a) \(BC \bot \left( {OAH} \right)\). b) H là trực tâm của \(\Delta ABC\). c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).
Đề bài
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Chứng minh rằng:
a) \(BC \bot \left( {OAH} \right)\).
b) H là trực tâm của \(\Delta ABC\).
c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về đường thẳng vuông góc với mặt phẳng:
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau trong \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
+ Nếu đường thẳng d vuông góc với mặt phẳng \(\left( \alpha \right)\) thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết
a) Vì H là hình chiếu của O trên mặt phẳng (ABC) nên \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot BC\)
Vì \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {BOC} \right) \Rightarrow OA \bot BC\)
Ta có: \(OA \bot BC,OH \bot BC \Rightarrow BC \bot \left( {OAH} \right)\)
b) Vì \(BC \bot \left( {OAH} \right)\) nên \(BC \bot AH\) (1)
Vì \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot AC\)
Vì \(OA \bot OB,OB \bot OC \Rightarrow OB \bot \left( {AOC} \right) \Rightarrow OB \bot AC\)
Ta có: \(OB \bot AC,OH \bot AC \Rightarrow AC \bot \left( {OBH} \right) \Rightarrow AC \bot BH\) (2)
Mà H là giao điểm của BH và CH (3)
Từ (1), (2) và (3) ta có: H là trực tâm của \(\Delta ABC\).
c) Gọi D là giao điểm của AH và BC. Khi đó, \(OD \bot BC\)
Vì \(OA \bot \left( {BOC} \right) \Rightarrow OA \bot OD\)
Do đó, tam giác AOD vuông tại O. Mà OH là đường cao nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{D^2}}} + \frac{1}{{O{A^2}}}\)
Tam giác BOC vuông tại O, đường cao OD có: \(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Vậy \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài tập. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Tính đạo hàm của hàm số f(x) = x^2 + 3x - 2
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:
f'(x) = \frac{d}{dx}(x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(2)\
Sử dụng quy tắc tính đạo hàm của lũy thừa và hằng số, ta có:
f'(x) = 2x + 3 - 0 = 2x + 3\
Vậy, đạo hàm của hàm số f(x) = x^2 + 3x - 2 là f'(x) = 2x + 3.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 1 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúc bạn học tập tốt!