Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 14 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!
Cho \(\pi < \alpha < \frac{{3\pi }}{2}\). Xác định dấu của các giá trị lượng giác sau: a) \(\cos \left( {\alpha + \pi } \right)\); b) \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\); c) \(\tan \left( {\alpha + \frac{{3\pi }}{2}} \right)\); d) \(\cot \left( {\alpha - \frac{\pi }{2}} \right)\); e) \(\cos \left( {2\alpha + \frac{\pi }{2}} \right)\); g) \(\sin \left( {\pi - 2\alpha } \right)\).
Đề bài
Cho \(\pi < \alpha < \frac{{3\pi }}{2}\). Xác định dấu của các giá trị lượng giác sau:
a) \(\cos \left( {\alpha + \pi } \right)\);
b) \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\);
c) \(\tan \left( {\alpha + \frac{{3\pi }}{2}} \right)\);
d) \(\cot \left( {\alpha - \frac{\pi }{2}} \right)\);
e) \(\cos \left( {2\alpha + \frac{\pi }{2}} \right)\);
g) \(\sin \left( {\pi - 2\alpha } \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt:
a) \(\cos \left( {\pi + \alpha } \right) = - \cos \alpha \)
b) \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \)
c) \(\tan \left( {2\pi + \alpha } \right) = \tan \alpha \), \(\tan \left( { - \alpha } \right) = - \tan \alpha \), \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \)
d) \(\cot \left( { - \alpha } \right) = - \cot \alpha \), \(\cot \left( {\frac{\pi }{2} - \alpha } \right) = \tan \alpha \)
e) \(\cos \left( {\pi + \alpha } \right) = - \cos \alpha \), \(\cos \left( { - \alpha } \right) = \cos \alpha \), \(\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \)
g) \(\sin \left( {\pi - \alpha } \right) = \sin \alpha \)
Lời giải chi tiết
a) \(\cos \left( {\alpha + \pi } \right) \) \( = - \cos \alpha > 0\) vì \(\pi < \alpha < \frac{{3\pi }}{2}\);
b) \(\sin \left( {\frac{\pi }{2} - \alpha } \right) \) \( = \cos \alpha < 0\) vì \(\pi < \alpha < \frac{{3\pi }}{2}\);
c) \(\tan \left( {\alpha + \frac{{3\pi }}{2}} \right) \) \( = \tan \left( {\alpha + 2\pi - \frac{\pi }{2}} \right) \) \( = - \tan \left( {\frac{\pi }{2} - \alpha } \right) \) \( = - \cot \alpha < 0\) vì \(\pi < \alpha < \frac{{3\pi }}{2}\);
d) \(\cot \left( {\alpha - \frac{\pi }{2}} \right) \) \( = - \cot \left( {\frac{\pi }{2} - \alpha } \right) \) \( = - \tan \alpha < 0\) vì \(\pi < \alpha < \frac{{3\pi }}{2}\);
e) \(\cos \left( {2\alpha + \frac{\pi }{2}} \right) \) \( = \cos \left( {2\alpha + \pi - \frac{\pi }{2}} \right) \) \( = - \cos \left( {2\alpha - \frac{\pi }{2}} \right) \) \( = - \cos \left( {\frac{\pi }{2} - 2\alpha } \right) \) \( = - \sin 2\alpha < 0\) vì \(2\pi < 2\alpha < 3\pi \);
g) \(\sin \left( {\pi - 2\alpha } \right) \) \( = \sin 2\alpha > 0\) vì \(2\pi < 2\alpha < 3\pi \).
Bài 3 trang 14 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số bậc hai, đồ thị hàm số và các ứng dụng của chúng. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản, các định lý và công thức liên quan để giải quyết một cách chính xác và hiệu quả.
Bài 3 thường bao gồm các dạng bài tập sau:
Để xác định các yếu tố của hàm số bậc hai y = ax2 + bx + c, ta thực hiện các bước sau:
Sau khi xác định được các yếu tố của hàm số, ta tiến hành vẽ đồ thị như sau:
Tùy thuộc vào yêu cầu của từng bài toán, ta áp dụng các kiến thức và kỹ năng đã học để giải quyết. Ví dụ, để tìm giá trị lớn nhất hoặc nhỏ nhất của hàm số, ta sử dụng tọa độ đỉnh của parabol. Để giải phương trình bậc hai, ta sử dụng công thức nghiệm hoặc phương pháp phân tích thành nhân tử.
Xét hàm số y = 2x2 - 8x + 6. Hãy xác định các yếu tố của hàm số và vẽ đồ thị.
Giải:
Dựa vào các yếu tố trên, ta có thể vẽ được đồ thị hàm số.
Bài 3 trang 14 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải quyết bài tập một cách hiệu quả.