Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án, phương pháp giải và các kiến thức liên quan để giúp các em học sinh hiểu rõ hơn về nội dung bài học.

Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, giúp các em tự tin hơn trong quá trình học tập môn Toán.

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên (mathbb{R}).

Đề bài

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên \(\mathbb{R}\).

a) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 2\;khi\;x \le 2\\\frac{1}{{x + 1}}\;\;\;\;\;\;\;\;khi\;x > 2\end{array} \right.\);

b) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x\;khi\;x \le 1\\\frac{2}{x} + 1\;\;\;\;\;khi\;x > 1\end{array} \right.\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về định nghĩa đạo hàm để xét tính liên tục và tính đạo hàm: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết

a) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x + 1}} = \frac{1}{3} \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - x + 2} \right) = 4\) nên f(x) gián đoạn tại \(x = 2\). Do đó, f(x) không có giới hạn tại 2, không có đạo hàm tại 2.

b) Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} + 1} \right) = 3;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 2x} \right) = 3;f\left( 1 \right) = 3\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\). Do đó, hàm số f(x) liên tục tại \(x = 1\).

Lại có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{2}{x} + 1 - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = - 2;\)

\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = 4\)

Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Do đó, không tồn tại \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Vậy không tồn tại đạo hàm tại \(x = 1\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng soạn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 3 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học môn Toán lớp 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm cơ bản, các định lý và các kỹ năng giải toán liên quan.

Nội dung bài tập

Bài 3 trang 39 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số: Yêu cầu học sinh xác định tập hợp các giá trị của x mà hàm số có nghĩa.
  • Tìm tập giá trị của hàm số: Yêu cầu học sinh xác định tập hợp các giá trị mà hàm số có thể nhận được.
  • Xét tính đơn điệu của hàm số: Yêu cầu học sinh xác định hàm số đồng biến hay nghịch biến trên một khoảng nào đó.
  • Vẽ đồ thị hàm số: Yêu cầu học sinh vẽ đồ thị của hàm số dựa trên các thông tin đã tìm được.
  • Giải phương trình, bất phương trình: Vận dụng kiến thức về hàm số để giải các phương trình, bất phương trình.

Lời giải chi tiết bài 3 trang 39

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3 trang 39, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: ...

(Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)

Câu b: ...

(Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)

Câu c: ...

(Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)

Các kiến thức liên quan

Để giải quyết bài 3 trang 39 một cách hiệu quả, các em cần nắm vững các kiến thức sau:

  • Khái niệm hàm số: Định nghĩa hàm số, tập xác định, tập giá trị.
  • Các loại hàm số: Hàm số bậc nhất, hàm số bậc hai, hàm số mũ, hàm số logarit.
  • Đồ thị hàm số: Cách vẽ đồ thị hàm số, các yếu tố cơ bản của đồ thị hàm số.
  • Tính đơn điệu của hàm số: Điều kiện để hàm số đồng biến, nghịch biến.
  • Các phép biến đổi hàm số: Tịnh tiến, đối xứng, co giãn.

Mẹo giải bài tập

Để giải bài tập về hàm số một cách nhanh chóng và chính xác, các em có thể áp dụng một số mẹo sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán.
  2. Phân tích đề bài: Xác định các thông tin đã cho và các thông tin cần tìm.
  3. Vận dụng kiến thức: Sử dụng các công thức, định lý và các kỹ năng giải toán liên quan.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả của mình là chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải toán, các em có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2
  • Bài 2 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2
  • Bài 4 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Kết luận

Bài 3 trang 39 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các kiến thức liên quan mà chúng tôi cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 11