Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 8 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 8 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tính tổng của các cấp số nhân lùi vô hạn: a) \(1 - \frac{1}{5} + \frac{1}{{{5^2}}} - \frac{1}{{{5^3}}} + ... + {\left( { - \frac{1}{5}} \right)^n} + ...\) b) \(2 + \frac{{{2^2}}}{3} + \frac{{{2^3}}}{{{3^2}}} + ... + \frac{{{2^n}}}{{{3^{n - 1}}}} + ...\)

Đề bài

Tính tổng của các cấp số nhân lùi vô hạn:

a) \(1 - \frac{1}{5} + \frac{1}{{{5^2}}} - \frac{1}{{{5^3}}} + ... + {\left( { - \frac{1}{5}} \right)^n} + ...\)

b) \(2 + \frac{{{2^2}}}{3} + \frac{{{2^3}}}{{{3^2}}} + ... + \frac{{{2^n}}}{{{3^{n - 1}}}} + ...\)

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính tổng: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\)

Lời giải chi tiết

a) Tổng trên là tổng của một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{{ - 1}}{5}\) nên \(1 - \frac{1}{5} + \frac{1}{{{5^2}}} - \frac{1}{{{5^3}}} + ... + {\left( { - \frac{1}{5}} \right)^n} + ... = \frac{1}{{1 - \left( { - \frac{1}{5}} \right)}} = \frac{5}{6}\)

b) \(2 + \frac{{{2^2}}}{3} + \frac{{{2^3}}}{{{3^2}}} + ... + \frac{{{2^n}}}{{{3^{n - 1}}}} + ...\)\( = 2\left[ {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} \right)}^2} + ... + {{\left( {\frac{2}{3}} \right)}^{n - 1}} + {{\left( {\frac{2}{3}} \right)}^n} + ...} \right]\)

Tổng \(1 + \frac{2}{3} + {\left( {\frac{2}{3}} \right)^2} + ... + {\left( {\frac{2}{3}} \right)^{n - 1}} + {\left( {\frac{2}{3}} \right)^n} + ...\) là tổng của một cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{2}{3}\)

Do đó, \(2\left[ {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} \right)}^2} + ... + {{\left( {\frac{2}{3}} \right)}^{n - 1}} + {{\left( {\frac{2}{3}} \right)}^n} + ...} \right] = 2.\frac{1}{{1 - \frac{2}{3}}} = 6\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng soạn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 8 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 8 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung chi tiết bài 8 trang 76

Bài 8 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các yếu tố của hàm số lượng giác. Yêu cầu học sinh xác định tập xác định, tập giá trị, chu kỳ, tính chất đồng biến, nghịch biến của hàm số.
  • Dạng 2: Vẽ đồ thị hàm số lượng giác. Yêu cầu học sinh vẽ đồ thị của các hàm số lượng giác cơ bản và các hàm số lượng giác được biến đổi từ hàm số cơ bản.
  • Dạng 3: Tìm các điểm đặc biệt trên đồ thị hàm số lượng giác. Yêu cầu học sinh tìm các điểm cực đại, cực tiểu, điểm uốn, giao điểm của đồ thị hàm số với các trục tọa độ.
  • Dạng 4: Giải các phương trình, bất phương trình lượng giác. Yêu cầu học sinh sử dụng kiến thức về đồ thị hàm số lượng giác để giải các phương trình, bất phương trình lượng giác.

Phương pháp giải bài tập

Để giải tốt bài tập 8 trang 76, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ định nghĩa, tính chất, và đồ thị của các hàm số lượng giác cơ bản.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  3. Sử dụng các công cụ hỗ trợ: Sử dụng máy tính cầm tay, phần mềm vẽ đồ thị, hoặc các trang web học toán online để kiểm tra kết quả và tìm hiểu thêm về các kiến thức liên quan.
  4. Phân tích bài toán: Đọc kỹ đề bài, xác định các yếu tố đã cho và yêu cầu của bài toán.
  5. Lựa chọn phương pháp giải phù hợp: Dựa vào đặc điểm của bài toán để lựa chọn phương pháp giải phù hợp nhất.

Ví dụ minh họa

Ví dụ: Cho hàm số y = 2sin(x + π/3). Hãy xác định tập xác định, tập giá trị, chu kỳ, và vẽ đồ thị của hàm số.

Giải:

  • Tập xác định: R
  • Tập giá trị: [-2, 2]
  • Chu kỳ:
  • Đồ thị: Đồ thị của hàm số y = 2sin(x + π/3) là đồ thị của hàm số y = sin(x) được giãn theo phương Oy với hệ số 2 và dịch chuyển sang trái π/3 đơn vị.

Lưu ý quan trọng

Khi giải bài tập về hàm số lượng giác, bạn cần chú ý đến các vấn đề sau:

  • Đơn vị đo góc (độ hoặc radian).
  • Các phép biến đổi đồ thị (dịch chuyển, co giãn, đối xứng).
  • Các giá trị đặc biệt của hàm số lượng giác (sin(0) = 0, cos(0) = 1, tan(0) = 0, ...).

Tổng kết

Bài 8 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!

Hàm sốTập xác địnhTập giá trị
y = sin(x)R[-1, 1]
y = cos(x)R[-1, 1]
y = tan(x)R \ {π/2 + kπ, k ∈ Z}R

Tài liệu, đề thi và đáp án Toán 11