Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 34 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 34 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh, sinh viên. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này ngay nhé!

Vận tốc \({v_1}\left( {cm/s} \right)\) của con lắc đơn thứ nhất và vận tốc \({v_2}\left( {cm/s} \right)\) của con lắc đơn thứ hai theo thời gian t (giây) được cho bởi các công thức: \({v_1}\left( t \right) \) \( = - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right)\) và \({v_2}\left( t \right) \) \( = 2\sin \left( {2t + \frac{\pi }{6}} \right)\) Xác định các thời điểm t mà tại đó: a) Vận tốc của con lắc đơn thứ nhất bằng 2cm/s. b) Vận tốc của con lắc đơn thứ nhất gấp hai lần vận tốc củ

Đề bài

Vận tốc \({v_1}\left( {cm/s} \right)\) của con lắc đơn thứ nhất và vận tốc \({v_2}\left( {cm/s} \right)\) của con lắc đơn thứ hai theo thời gian t (giây) được cho bởi các công thức:

\({v_1}\left( t \right) \) \( = - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right)\) và \({v_2}\left( t \right) \) \( = 2\sin \left( {2t + \frac{\pi }{6}} \right)\)

Xác định các thời điểm t mà tại đó:

a) Vận tốc của con lắc đơn thứ nhất bằng 2cm/s.

b) Vận tốc của con lắc đơn thứ nhất gấp hai lần vận tốc của con lắc đơn thứ hai.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải phương trình: Phương trình \(\cos x \) \( = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x \) \( = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x \) \( = - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha \) \( = m\).

Đặc biệt: \(\cos u \) \( = \cos v \) \( \Leftrightarrow u \) \( = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u \) \( = - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Vận tốc của con lắc đơn thứ nhất bằng 2cm/s khi:

\( - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = 2 \) \( \Leftrightarrow \cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = \frac{{ - 1}}{2} \) \( \Leftrightarrow \cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = \cos \frac{{2\pi }}{3}\)

 \( \Leftrightarrow \left[ \begin{array}{l}\frac{{2t}}{3} + \frac{\pi }{4} = \frac{{2\pi }}{3} + k2\pi \\\frac{{2t}}{3} + \frac{\pi }{4} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}t = \frac{{5\pi }}{8} + k3\pi \\t = \frac{{ - 11\pi }}{8} + k3\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(t > 0\) nên \(t \) \( = \frac{{5\pi }}{8} + k3\pi \left( {k \in \mathbb{N}} \right)\) hoặc \(t \) \( = \frac{{13\pi }}{8} + k3\pi \left( {k \in \mathbb{N}} \right)\)

b) Vận tốc của con lắc đơn thứ nhất gấp hai lần vận tốc của con lắc đơn thứ hai khi:

\( - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = 2.2\sin \left( {2t + \frac{\pi }{6}} \right) \) \( \Leftrightarrow \cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = - \sin \left( {2t + \frac{\pi }{6}} \right)\)

 \( \Leftrightarrow \cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = \cos \left[ {\frac{\pi }{2} + \left( {2t + \frac{\pi }{6}} \right)} \right] \) \( \Leftrightarrow \cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) \) \( = \cos \left( {2t + \frac{{2\pi }}{3}} \right)\)

 \( \Leftrightarrow \left[ \begin{array}{l}2t + \frac{{2\pi }}{3} = \frac{{2t}}{3} + \frac{\pi }{4} + k2\pi \\2t + \frac{{2\pi }}{3} = - \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 5\pi }}{{16}} + \frac{{k3\pi }}{2}\\t = \frac{{ - 11\pi }}{{32}} + \frac{{k3\pi }}{4}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(t > 0\) nên \(t \) \( = \frac{{19\pi }}{{16}} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{N}} \right)\) hoặc \(t \) \( = \frac{{13\pi }}{{32}} + \frac{{k3\pi }}{4}\left( {k \in \mathbb{N}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 5 trang 34 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 5 trang 34 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết một số thông tin nhất định.

Nội dung chi tiết bài 5 trang 34

Bài 5 bao gồm các câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của việc xác định phương trình parabol. Cụ thể:

  • Câu a: Yêu cầu xác định phương trình parabol có đỉnh I(1; 2) và đi qua điểm A(3; 6).
  • Câu b: Yêu cầu xác định phương trình parabol có đỉnh I(-1; -2) và đi qua điểm B(0; -1).
  • Câu c: Yêu cầu xác định phương trình parabol có trục đối xứng x = -2 và đi qua hai điểm C(1; 3) và D(-5; 3).
  • Câu d: Yêu cầu xác định phương trình parabol có trục đối xứng x = 3 và đi qua hai điểm E(1; -2) và F(5; -2).

Phương pháp giải bài tập

Để giải quyết bài 5 trang 34, học sinh cần nắm vững các công thức và phương pháp sau:

  1. Phương trình tổng quát của parabol: y = ax2 + bx + c (a ≠ 0)
  2. Phương trình chính tắc của parabol: y = a(x - h)2 + k, trong đó (h; k) là tọa độ đỉnh của parabol.
  3. Trục đối xứng của parabol: x = h
  4. Cách xác định hệ số a: Thay tọa độ của một điểm thuộc parabol vào phương trình để tìm a.

Lời giải chi tiết

Câu a:

Ta có phương trình parabol có dạng: y = a(x - 1)2 + 2. Thay tọa độ điểm A(3; 6) vào phương trình, ta được:

6 = a(3 - 1)2 + 2

6 = 4a + 2

4a = 4

a = 1

Vậy phương trình parabol là: y = (x - 1)2 + 2 = x2 - 2x + 3

Câu b:

Tương tự như câu a, ta có phương trình parabol có dạng: y = a(x + 1)2 - 2. Thay tọa độ điểm B(0; -1) vào phương trình, ta được:

-1 = a(0 + 1)2 - 2

-1 = a - 2

a = 1

Vậy phương trình parabol là: y = (x + 1)2 - 2 = x2 + 2x - 1

Câu c:

Ta có phương trình parabol có dạng: y = a(x + 2)2 + k. Thay tọa độ điểm C(1; 3) và D(-5; 3) vào phương trình, ta được hệ phương trình:

3 = a(1 + 2)2 + k

3 = a(-5 + 2)2 + k

Giải hệ phương trình này, ta được a = 0 và k = 3. Tuy nhiên, a ≠ 0 nên có lẽ đề bài có sai sót. Nếu trục đối xứng là x = -2 và hai điểm C, D có cùng tung độ thì parabol là đường thẳng y = 3.

Câu d:

Tương tự như câu c, ta có phương trình parabol có dạng: y = a(x - 3)2 + k. Thay tọa độ điểm E(1; -2) và F(5; -2) vào phương trình, ta được hệ phương trình:

-2 = a(1 - 3)2 + k

-2 = a(5 - 3)2 + k

Giải hệ phương trình này, ta được a = 0 và k = -2. Tương tự như câu c, nếu trục đối xứng là x = 3 và hai điểm E, F có cùng tung độ thì parabol là đường thẳng y = -2.

Kết luận

Bài 5 trang 34 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về parabol và phương pháp xác định phương trình parabol. Hy vọng với lời giải chi tiết này, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và giải bài tập.

Lưu ý

Trong quá trình giải bài tập, cần chú ý kiểm tra lại các bước tính toán và đảm bảo rằng các điều kiện của bài toán được thỏa mãn. Nếu gặp khó khăn, hãy tham khảo thêm các tài liệu học tập hoặc tìm sự giúp đỡ từ giáo viên và bạn bè.

Tài liệu, đề thi và đáp án Toán 11