Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 6 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 6 trang 27 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 27 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn: a) \(y = \sin x - 3\tan \frac{x}{2}\); b) \(y = \left( {\cos 2x - 1} \right)\sin x\).

Đề bài

Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn:

a) \(y = \sin x - 3\tan \frac{x}{2}\);

b) \(y = \left( {\cos 2x - 1} \right)\sin x\).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về hàm số tuần hoàn để chứng minh: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số \(T \ne 0\) sao cho với mọi \(x \in D\) ta có \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( T \right)\). Số dương T nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn \(y = f\left( x \right)\).

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\pi + k2\pi |k \in \mathbb{Z}} \right\}\).

Với mọi \(x \in D\) ta có: \(x \pm 2\pi \in D\) và \(\sin \left( {x + 2\pi } \right) - 3\tan \frac{{x + 2\pi }}{2} = \sin x - 3\tan \left( {\frac{x}{2} + \pi } \right) = \sin x - 3\tan \frac{x}{2}\)

Do đó, hàm số \(y = \sin x - 3\tan \frac{x}{2}\) là hàm số tuần hoàn.

b) Tập xác định: \(D = \mathbb{R}\)

Với mọi \(x \in D\) ta có: \(x \pm 2\pi \in D\) và \(\left( {\cos 2\left( {x + 2\pi } \right) - 1} \right)\sin \left( {x + 2\pi } \right) = \left( {\cos \left( {2x + 4\pi } \right) - 1} \right)\sin x = \left( {\cos 2x - 1} \right)\sin x\)

Do đó, hàm số \(y = \left( {\cos 2x - 1} \right)\sin x\) là hàm số tuần hoàn.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6 trang 27 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 6 trang 27 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số.

Nội dung bài tập

Bài 6 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác.
  • Tìm tập giá trị của hàm số lượng giác.
  • Xét tính chẵn, lẻ của hàm số lượng giác.
  • Vẽ đồ thị hàm số lượng giác.
  • Giải phương trình lượng giác.

Lời giải chi tiết bài 6 trang 27

Để giải bài 6 trang 27 sách bài tập Toán 11 - Chân trời sáng tạo tập 1, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài và xác định yêu cầu của bài toán.
  2. Vận dụng các kiến thức đã học về hàm số lượng giác để giải bài toán.
  3. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa (Giả định một bài tập cụ thể)

Bài tập: Tìm tập xác định của hàm số y = tan(2x + π/3)

Lời giải:

Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên.

Suy ra 2x ≠ π/2 + kπ - π/3 = π/6 + kπ

Vậy x ≠ π/12 + kπ/2, với k là số nguyên.

Tập xác định của hàm số là D = R \ {π/12 + kπ/2 | k ∈ Z}

Các lưu ý khi giải bài tập hàm số lượng giác

  • Nắm vững định nghĩa và tính chất của các hàm số lượng giác (sin, cos, tan, cot).
  • Hiểu rõ cách xác định tập xác định và tập giá trị của hàm số lượng giác.
  • Luyện tập vẽ đồ thị hàm số lượng giác để nắm vững hình dạng và tính chất của chúng.
  • Sử dụng các công thức lượng giác để biến đổi và giải phương trình lượng giác.

Tài liệu tham khảo

Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng Toán 11 trên YouTube.

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 6 trang 27 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11