Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tìm tập giá trị của các hàm số sau: a) \(y = 5 - 2\cos \left( {\frac{\pi }{3} - x} \right)\); b) \(y = \left| {\sin 3x} \right| - 1\);

Đề bài

Tìm tập giá trị của các hàm số sau:

a) \(y = 5 - 2\cos \left( {\frac{\pi }{3} - x} \right)\);

b) \(y = \left| {\sin 3x} \right| - 1\);

c) \(y = 2\tan x + 3\);

d) \(y = \sqrt {1 - \sin x} + 2\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về tập giá trị của hàm số để tìm tập giá trị của các hàm số:

a, d) Hàm số \(y = \cos x\) có tập giá trị là \(\left[ { - 1;1} \right]\).

b) Hàm số \(y = \sin x\) có tập giá trị là \(\left[ { - 1;1} \right]\).

c) Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\).

Lời giải chi tiết

a) Ta có: \( - 1 \le \cos \left( {\frac{\pi }{3} - x} \right) \le 1 \) \( \Rightarrow - 2 \le - 2\cos \left( {\frac{\pi }{3} - x} \right) \le 2 \) \( \Rightarrow 3 \le 5 - 2\cos \left( {\frac{\pi }{3} - x} \right) \le 7\)

Do đó, tập giá trị của hàm số \(y = 5 - 2\cos \left( {\frac{\pi }{3} - x} \right)\) là: \(T = \left[ {3;7} \right]\)

b) Vì \(0 \le \left| {\sin 3x} \right| \le 1 \) \( \Rightarrow - 1 \le \left| {\sin 3x} \right| - 1 \le 0\)

Do đó, tập giá trị của hàm số \(y = \left| {\sin 3x} \right| - 1\) là: \(T = \left[ { - 1;0} \right]\)

c) Hàm số \(y = \tan x\) có tập giá trị là \(\mathbb{R}\) nên hàm số \(y = 2\tan x + 3\) có tập giá trị là \(\mathbb{R}\).

d) Vì \( - 1 \le \sin x \le 1 \) \( \Rightarrow 2 \ge 1 - \sin x \ge 0\) nên hàm số xác định trên \(\mathbb{R}\).

Khi đó, \(0 \le \sqrt {1 - \sin x} \le \sqrt 2 \). Do đó, \(2 \le \sqrt {1 - \sin x} + 2 \le 2 + \sqrt 2 \)

Do đó, tập giá trị của hàm số \(y = \sqrt {1 - \sin x} + 2\) là: \(T = \left[ {2;2 + \sqrt 2 } \right]\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm này là nền tảng quan trọng để học tốt các chương trình toán học nâng cao hơn.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần:

  1. Nắm vững định nghĩa và các tính chất của hàm số bậc hai.
  2. Biết cách xác định các yếu tố của parabol.
  3. Sử dụng công thức để tính tọa độ đỉnh và phương trình trục đối xứng.
  4. Vận dụng các kiến thức về khoảng đồng biến, nghịch biến để phân tích hàm số.
  5. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Lời giải chi tiết bài 3 trang 26

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1:

Câu a)

Đề bài: (Ví dụ) Xác định các hệ số a, b, c của hàm số y = 2x2 - 5x + 3.

Lời giải:

Hàm số y = 2x2 - 5x + 3 có:

  • a = 2
  • b = -5
  • c = 3

Câu b)

Đề bài: (Ví dụ) Tìm tọa độ đỉnh của parabol y = x2 - 4x + 1.

Lời giải:

Tọa độ đỉnh của parabol y = ax2 + bx + c là I(-b/2a, -Δ/4a), với Δ = b2 - 4ac.

Trong trường hợp này, a = 1, b = -4, c = 1. Vậy:

  • Δ = (-4)2 - 4 * 1 * 1 = 16 - 4 = 12
  • xI = -(-4) / (2 * 1) = 2
  • yI = -12 / (4 * 1) = -3

Vậy tọa độ đỉnh của parabol là I(2, -3).

Câu c)

Đề bài: (Ví dụ) Tìm phương trình trục đối xứng của parabol y = -x2 + 6x - 5.

Lời giải:

Phương trình trục đối xứng của parabol y = ax2 + bx + c là x = -b/2a.

Trong trường hợp này, a = -1, b = 6. Vậy:

x = -6 / (2 * -1) = 3

Vậy phương trình trục đối xứng của parabol là x = 3.

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc hai, bạn cần chú ý:

  • Kiểm tra kỹ các hệ số a, b, c.
  • Sử dụng đúng công thức để tính toán.
  • Phân tích kết quả và đưa ra kết luận chính xác.
  • Vẽ đồ thị hàm số để kiểm tra lại kết quả.

Tổng kết

Bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số bậc hai. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày ở trên, bạn sẽ tự tin hơn khi giải các bài tập tương tự.

Hãy luyện tập thường xuyên và đừng ngần ngại tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè nếu gặp khó khăn. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11