Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).

Đề bài

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)). 

Lời giải chi tiết

Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Gọi E là trung điểm của BC. Vì tam giác ABC đều nên AE là đường trung tuyến đồng thời là đường cao. Do đó, \(AE \bot BC\)

Ta có: \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\), mà \(AE \bot BC\). Suy ra: \(BC \bot \left( {SAE} \right)\)

Kẻ \(AF \bot SE\left( {S \in SE} \right)\). Vì \(BC \bot \left( {SAE} \right)\)\( \Rightarrow BC \bot AF\)

Ta có: \(BC \bot AF,AF \bot SE,\) BC và SE cắt nhau tại E và nằm trong mặt phẳng (SBC) nên \(AF \bot \left( {SBC} \right)\). Khi đó, AF là khoảng cách từ A đến mặt phẳng (SBC).

Vì tam giác ABC đều nên \(\widehat {ABC} = {60^0}\).

Tam giác ABE vuông tại E có: \(AE = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right),AE \subset \left( {ABC} \right) \Rightarrow SA \bot AE\)

Tam giác AES vuông tại A, có AF là đường cao nên:

\(\frac{1}{{A{F^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{S{A^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{6{a^2}}} = \frac{2}{{{a^2}}} \Rightarrow AF = \frac{{a\sqrt 2 }}{2}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng học toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 68 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 1 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và tính chất của các phép biến hình là vô cùng quan trọng để giải quyết bài tập này một cách hiệu quả.

Nội dung chi tiết bài 1 trang 68

Bài 1 bao gồm các câu hỏi và bài tập nhỏ, yêu cầu học sinh:

  • Xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép biến hình cho trước.
  • Tìm tâm của phép quay hoặc trục của phép đối xứng.
  • Chứng minh một hình là ảnh của một hình khác qua một phép biến hình.
  • Vận dụng các phép biến hình để giải quyết các bài toán hình học.

Lời giải chi tiết từng phần của bài 1

Câu a)

Để giải câu a, ta cần xác định ảnh của điểm M qua phép tịnh tiến theo vectơ v. Sử dụng công thức: M' = M + v, ta sẽ tìm được tọa độ của điểm M'.

Câu b)

Đối với câu b, ta cần tìm tâm của phép quay biến điểm A thành điểm A'. Sử dụng công thức tìm tâm quay, ta sẽ xác định được tọa độ của tâm quay O.

Câu c)

Câu c yêu cầu chứng minh tam giác ABC là ảnh của tam giác A'B'C' qua phép đối xứng trục Oy. Để chứng minh điều này, ta cần chứng minh rằng mỗi đỉnh của tam giác ABC là ảnh của một đỉnh tương ứng của tam giác A'B'C' qua phép đối xứng trục Oy.

Phương pháp giải bài tập về phép biến hình

Để giải quyết các bài tập về phép biến hình một cách hiệu quả, các em cần:

  1. Nắm vững định nghĩa và tính chất của từng phép biến hình (phép tịnh tiến, phép quay, phép đối xứng trục, phép đối xứng tâm).
  2. Hiểu rõ công thức biến đổi tọa độ của điểm, đường thẳng và hình qua từng phép biến hình.
  3. Sử dụng các công cụ hình học (thước, compa, êke) để vẽ hình và kiểm tra kết quả.
  4. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Ví dụ minh họa

Ví dụ: Cho điểm A(1; 2) và vectơ v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến theo vectơ v.

Lời giải: A' = A + v = (1 + 3; 2 - 1) = (4; 1).

Lưu ý quan trọng

Khi giải bài tập về phép biến hình, các em cần chú ý:

  • Đọc kỹ đề bài và xác định đúng phép biến hình được yêu cầu.
  • Sử dụng đúng công thức biến đổi tọa độ.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác.

Kết luận

Bài 1 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em hiểu sâu hơn về các phép biến hình. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn khi giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 11