Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 6 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 6 trang 31 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!

Tìm hoành độ các giao điểm của đồ thị các hàm số sau: a) \(y = \sin \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \sin \left( {\frac{\pi }{4} - x} \right)\);

Đề bài

Tìm hoành độ các giao điểm của đồ thị các hàm số sau:

a) \(y = \sin \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \sin \left( {\frac{\pi }{4} - x} \right)\);

b) \(y = \cos \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \cos \left( {x + \frac{\pi }{6}} \right)\). 

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải:

a) Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

b) Phương trình \(\cos x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha = m\).

Đặc biệt: \(\cos u = \cos v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Lời giải chi tiết

a) Phương trình hoành độ giao điểm của đồ thị hàm số \(y = \sin \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \sin \left( {\frac{\pi }{4} - x} \right)\) là:

\(\sin \left( {2x - \frac{\pi }{3}} \right) = \sin \left( {\frac{\pi }{4} - x} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = \frac{\pi }{4} - x + k2\pi \\2x - \frac{\pi }{3} = \pi - \left( {\frac{\pi }{4} - x} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\\x = \frac{{13\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy hoành độ giao điểm của hai đồ thị hàm số trên là: \(x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right),x = \frac{{13\pi }}{{12}} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

b) Phương trình hoành độ giao điểm của đồ thị hàm số \(y = \cos \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \cos \left( {x + \frac{\pi }{6}} \right)\) là:

\(\cos \left( {3x - \frac{\pi }{4}} \right) = \cos \left( {x + \frac{\pi }{6}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x + \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = - \left( {x + \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{24}} + k\pi \\x = \frac{\pi }{{48}} + \frac{{k\pi }}{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy hoành độ giao điểm của hai đồ thị hàm số trên là: \(x = \frac{{5\pi }}{{24}} + k\pi \left( {k \in \mathbb{Z}} \right);x = \frac{\pi }{{48}} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6 trang 31 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 6 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác cơ bản, tính chất của hàm số lượng giác và kỹ năng vẽ đồ thị để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 6 trang 31

Bài 6 bao gồm các câu hỏi và bài tập khác nhau, tập trung vào các nội dung sau:

  • Xác định tập xác định của hàm số lượng giác: Học sinh cần xác định được điều kiện để hàm số lượng giác có nghĩa, dựa trên các phép toán và các hàm số thành phần.
  • Tìm tập giá trị của hàm số lượng giác: Sử dụng kiến thức về khoảng giá trị của các hàm số lượng giác cơ bản (sin, cos, tan, cot) và các phép biến đổi để xác định tập giá trị của hàm số.
  • Khảo sát sự biến thiên của hàm số lượng giác: Phân tích tính đơn điệu, cực trị và các điểm đặc biệt của hàm số lượng giác.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các điểm đặc biệt, tính chất của hàm số và các phép biến đổi để vẽ đồ thị chính xác.

Hướng dẫn giải chi tiết từng câu hỏi

Câu a: ...

Để giải câu a, ta cần...

  1. Bước 1: ...
  2. Bước 2: ...
  3. Bước 3: ...

Kết quả: ...

Câu b: ...

Tương tự như câu a, ta thực hiện các bước sau...

...

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 6, học sinh có thể gặp các dạng bài tập tương tự như:

  • Bài tập về tìm tập xác định và tập giá trị của hàm số lượng giác.
  • Bài tập về khảo sát sự biến thiên và vẽ đồ thị hàm số lượng giác.
  • Bài tập về ứng dụng hàm số lượng giác vào giải quyết các bài toán thực tế.

Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức cơ bản về hàm số lượng giác, các phép biến đổi lượng giác và kỹ năng vẽ đồ thị.

Mẹo học tập hiệu quả

Để học tốt môn Toán 11, đặc biệt là phần hàm số lượng giác, học sinh nên:

  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến hàm số lượng giác.
  • Luyện tập thường xuyên các bài tập khác nhau để rèn luyện kỹ năng giải quyết vấn đề.
  • Sử dụng các công cụ hỗ trợ học tập như máy tính bỏ túi, phần mềm vẽ đồ thị.
  • Tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn.

Kết luận

Bài 6 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác và đồ thị. Hy vọng với lời giải chi tiết và hướng dẫn giải cụ thể, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Bảng tóm tắt công thức lượng giác quan trọng

Công thứcMô tả
sin2x + cos2x = 1Công thức lượng giác cơ bản
tan x = sin x / cos xĐịnh nghĩa hàm tan
cot x = cos x / sin xĐịnh nghĩa hàm cot

Tài liệu, đề thi và đáp án Toán 11