Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Huyết áp là áp lực máu cần thiết tác động lên thành động mạch nhằm đưa máu đi nuôi dưỡng các mô trong cơ thể. Nhờ lực co bóp của tim và sức cản của động mạch mà huyết áp được tạo ra.
Đề bài
Huyết áp là áp lực máu cần thiết tác động lên thành động mạch nhằm đưa máu đi nuôi dưỡng các mô trong cơ thể. Nhờ lực co bóp của tim và sức cản của động mạch mà huyết áp được tạo ra. Giả sử huyết áp của một người thay đổi theo thời gian được cho bởi công thức: \(p\left( t \right) = 120 + 15\cos 150\pi t,\) trong p(t) là huyết áp tính theo đơn vị mmHg (milimét thủy ngân) và thời gian t tính theo đơn vị phút.
a) Chứng minh p(t) là một hàm số tuần hoàn.
b) Huyết áp cao nhất và huyết áp thấp nhất lần lượt được gọi là huyết áp tâm thu và huyết áp tâm trương. Tìm chỉ số huyết áp của người đó, biết rằng chỉ số huyết áp được viết là huyết áp tâm thu/ huyết áp tâm trương.
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về hàm số tuần hoàn để chứng minh: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số \(T \ne 0\) sao cho với mọi \(x \in D\) ta có \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( T \right)\). Số dương T nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn \(y = f\left( x \right)\).
b) Sử dụng kiến thức về tập giá trị của hàm số lượng giác: Tập giá trị của hàm số \(y = \cos x\) là \(\left[ { - 1;1} \right]\).
Lời giải chi tiết
a) Hàm số p(t) có tập xác định là \(\mathbb{R}\). Với mọi \(t \in \mathbb{R}\) ta có: \(t \pm \frac{1}{{75}} \in \mathbb{R}\) và \(p\left( {t + \frac{1}{{75}}} \right) = 120 + 15\cos \left[ {150\pi \left( {t + \frac{1}{{75}}} \right)} \right] = 120 + 15\cos \left( {150\pi t + 2\pi } \right)\)
\( = 120 + 15\cos 150\pi t = p\left( t \right)\)
Do đó, p(t) là một hàm số tuần hoàn.
b) Vì \( - 1 \le \cos 150\pi t \le 1\) với mọi \(t \in \mathbb{R}\) nên \(105 \le p\left( t \right) \le 135\) với mọi \(t \in \mathbb{R}\)
Vậy chỉ số huyết áp của người đó là \(135/105.\)
Bài 7 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.
Bài 7 bao gồm các dạng bài tập sau:
Để giải bài 7 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1, bạn cần nắm vững các kiến thức sau:
Ví dụ: Xét hàm số y = 2x2 - 8x + 6
a) Xác định các yếu tố của parabol:
b) Tìm tọa độ đỉnh của parabol:
c) Tìm phương trình trục đối xứng của parabol:
d) Xác định khoảng đồng biến, nghịch biến của hàm số:
Khi giải bài 7 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1, bạn cần chú ý:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 7 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1. Chúc bạn học tập tốt!