Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 10 trang 95 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh, sinh viên. Hãy cùng theo dõi bài viết này để hiểu rõ hơn về cách giải bài tập và áp dụng vào các bài tập tương tự nhé!
Cho điểm M thay đổi trên parabol \(y = {x^2}\); H là hình chiếu vuông góc của M trên trục hoành. Gọi x là hoành độ của điểm H. Tìm \(\mathop {\lim }\limits_{x \to + \infty } \left( {OM - MH} \right)\)
Đề bài
Cho điểm M thay đổi trên parabol \(y = {x^2}\); H là hình chiếu vuông góc của M trên trục hoành. Gọi x là hoành độ của điểm H. Tìm \(\mathop {\lim }\limits_{x \to + \infty } \left( {OM - MH} \right)\)
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\)
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0\) (với c là hằng số, k là số nguyên dương)
Lời giải chi tiết
Ta có: \(M\left( {x;{x^2}} \right)\), \(OM = \sqrt {{x^2} + {x^4}} \), \(MH = {x^2}\).
Nên\(\mathop {\lim }\limits_{x \to + \infty } \left( {OM - MH} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + {x^4}} - {x^2}} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2}}}{{\sqrt {{x^2} + {x^4}} + {x^2}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt {\frac{1}{{{x^2}}} + 1} + 1}} = \frac{1}{2}\).
Bài 10 trang 95 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và tính chất của các phép biến hình là điều kiện cần thiết để hoàn thành tốt bài tập này.
Bài 10 trang 95 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thường bao gồm các dạng bài tập sau:
Để giải bài 10 trang 95 sách bài tập Toán 11 Chân trời sáng tạo tập 1, bạn có thể thực hiện theo các bước sau:
Ví dụ: Cho điểm A(1; 2) và phép tịnh tiến theo vector v = (3; -1). Tìm tọa độ điểm A' là ảnh của điểm A qua phép tịnh tiến đó.
Giải:
Tọa độ điểm A' được tính theo công thức:
A'(x' ; y') = A(x ; y) + v(a ; b) = (x + a ; y + b)
Thay các giá trị vào, ta có:
A'(1 + 3 ; 2 - 1) = A'(4 ; 1)
Vậy, tọa độ điểm A' là (4; 1).
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Bài 10 trang 95 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về phép biến hình. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán 11.