Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}}\); b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}}\); c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}}\); d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}}\); e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}}\); g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}}\).

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}}\);

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}}\);

c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}}\);

d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}}\);

e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}}\);

g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}}\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right)\)\( = - 2 - 2 \) \( = - 4\).

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}} \) \( = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} \) \( = - \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 1} \right)\)\( = - \left( {{1^2} + 1 + 1} \right) \) \( = - 3\);

c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}} \) \( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{x - 3}} \) \( = \mathop {\lim }\limits_{x \to 3} \left( {x - 1} \right) \) \( = 3 - 1 \) \( = 2\);

d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {2 - \sqrt {x + 6} } \right)\left( {2 + \sqrt {x + 6} } \right)}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{4 - x - 6}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}}\)

\( = \mathop {\lim }\limits_{x \to - 2} \frac{{ - \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{ - 1}}{{2 + \sqrt {x + 6} }} \) \( = \frac{{ - 1}}{{2 + \sqrt { - 2 + 6} }} \) \( = \frac{{ - 1}}{4}\)

e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}} \) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{{\left( {\sqrt {x + 1} - 1} \right)\left( {\sqrt {x + 1} + 1} \right)}} \) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 1} + 1} \right) \) \( = \sqrt {0 + 1} + 1 \) \( = 2\);

g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}} \) \( = \mathop {\lim }\limits_{x \to 2} \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \) \( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{x + 2}} \) \( = \frac{{2 - 2}}{{2 + 2}} \) \( = 0\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, các phép biến đổi lượng giác cơ bản và phương pháp giải phương trình lượng giác. Việc nắm vững các kiến thức này là nền tảng quan trọng để giải quyết bài toán một cách chính xác và hiệu quả.

Nội dung bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Bài 3 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định tập xác định của hàm số lượng giác.
  • Dạng 2: Tìm tập giá trị của hàm số lượng giác.
  • Dạng 3: Xét tính chẵn, lẻ của hàm số lượng giác.
  • Dạng 4: Vẽ đồ thị hàm số lượng giác.
  • Dạng 5: Giải phương trình lượng giác.

Lời giải chi tiết bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1.

Câu a: (Ví dụ minh họa)

Cho hàm số y = sin(2x). Hãy xác định tập xác định của hàm số.

Lời giải:

Hàm số y = sin(2x) xác định khi và chỉ khi biểu thức bên trong hàm sin có nghĩa. Vì hàm sin xác định với mọi giá trị thực của x, nên 2x có nghĩa với mọi x thuộc tập số thực. Do đó, tập xác định của hàm số y = sin(2x) là D = ℝ.

Câu b: (Ví dụ minh họa)

Tìm tập giá trị của hàm số y = 2cos(x) - 1.

Lời giải:

Ta biết rằng -1 ≤ cos(x) ≤ 1 với mọi x thuộc tập số thực. Nhân cả ba vế của bất đẳng thức với 2, ta được -2 ≤ 2cos(x) ≤ 2. Cộng 1 vào cả ba vế, ta được -1 ≤ 2cos(x) - 1 ≤ 1. Vậy tập giá trị của hàm số y = 2cos(x) - 1 là [-1, 1].

Các lưu ý khi giải bài tập về hàm số lượng giác

Để giải bài tập về hàm số lượng giác một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Nắm vững định nghĩa, tính chất của các hàm số lượng giác cơ bản (sin, cos, tan, cot).
  • Thành thạo các phép biến đổi lượng giác cơ bản (công thức cộng, trừ, nhân đôi, chia đôi).
  • Luyện tập giải nhiều dạng bài tập khác nhau để làm quen với các phương pháp giải.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.

Ứng dụng của hàm số lượng giác trong thực tế

Hàm số lượng giác có rất nhiều ứng dụng trong thực tế, đặc biệt trong các lĩnh vực như:

  • Vật lý: Mô tả các hiện tượng dao động, sóng.
  • Kỹ thuật: Thiết kế các mạch điện, hệ thống điều khiển.
  • Địa lý: Tính toán khoảng cách, độ cao.
  • Âm nhạc: Phân tích âm thanh, tạo ra các hiệu ứng âm thanh.

Tổng kết

Bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn sẽ tự tin hơn khi giải quyết bài tập này và các bài tập tương tự trong tương lai. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11