Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}}\); b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}}\); c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}}\); d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}}\); e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}}\); g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}}\).
Đề bài
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}}\);
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}}\);
c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}}\);
d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}}\);
e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}}\);
g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}}\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right)\)\( = - 2 - 2 \) \( = - 4\).
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}} \) \( = \mathop {\lim }\limits_{x \to 1} \frac{{ - \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{x - 1}} \) \( = - \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 1} \right)\)\( = - \left( {{1^2} + 1 + 1} \right) \) \( = - 3\);
c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{x - 3}} \) \( = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 1} \right)\left( {x - 3} \right)}}{{x - 3}} \) \( = \mathop {\lim }\limits_{x \to 3} \left( {x - 1} \right) \) \( = 3 - 1 \) \( = 2\);
d) \(\mathop {\lim }\limits_{x \to - 2} \frac{{2 - \sqrt {x + 6} }}{{x + 2}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {2 - \sqrt {x + 6} } \right)\left( {2 + \sqrt {x + 6} } \right)}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{4 - x - 6}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to - 2} \frac{{ - \left( {x + 2} \right)}}{{\left( {x + 2} \right)\left( {2 + \sqrt {x + 6} } \right)}} \) \( = \mathop {\lim }\limits_{x \to - 2} \frac{{ - 1}}{{2 + \sqrt {x + 6} }} \) \( = \frac{{ - 1}}{{2 + \sqrt { - 2 + 6} }} \) \( = \frac{{ - 1}}{4}\)
e) \(\mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {x + 1} - 1}} \) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{{\left( {\sqrt {x + 1} - 1} \right)\left( {\sqrt {x + 1} + 1} \right)}} \) \( = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{x}\)
\( = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 1} + 1} \right) \) \( = \sqrt {0 + 1} + 1 \) \( = 2\);
g) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4x + 4}}{{{x^2} - 4}} \) \( = \mathop {\lim }\limits_{x \to 2} \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \) \( = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{x + 2}} \) \( = \frac{{2 - 2}}{{2 + 2}} \) \( = 0\).
Bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, các phép biến đổi lượng giác cơ bản và phương pháp giải phương trình lượng giác. Việc nắm vững các kiến thức này là nền tảng quan trọng để giải quyết bài toán một cách chính xác và hiệu quả.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1.
Cho hàm số y = sin(2x). Hãy xác định tập xác định của hàm số.
Lời giải:
Hàm số y = sin(2x) xác định khi và chỉ khi biểu thức bên trong hàm sin có nghĩa. Vì hàm sin xác định với mọi giá trị thực của x, nên 2x có nghĩa với mọi x thuộc tập số thực. Do đó, tập xác định của hàm số y = sin(2x) là D = ℝ.
Tìm tập giá trị của hàm số y = 2cos(x) - 1.
Lời giải:
Ta biết rằng -1 ≤ cos(x) ≤ 1 với mọi x thuộc tập số thực. Nhân cả ba vế của bất đẳng thức với 2, ta được -2 ≤ 2cos(x) ≤ 2. Cộng 1 vào cả ba vế, ta được -1 ≤ 2cos(x) - 1 ≤ 1. Vậy tập giá trị của hàm số y = 2cos(x) - 1 là [-1, 1].
Để giải bài tập về hàm số lượng giác một cách hiệu quả, bạn cần lưu ý những điều sau:
Hàm số lượng giác có rất nhiều ứng dụng trong thực tế, đặc biệt trong các lĩnh vực như:
Bài 3 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn sẽ tự tin hơn khi giải quyết bài tập này và các bài tập tương tự trong tương lai. Chúc bạn học tập tốt!