Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho các dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) thỏa mãn \(\lim {u_n} = 2,\lim \left( {{u_n} - {v_n}} \right) = 4\). Tìm \(\lim \frac{{3{u_n} - {v_n}}}{{{u_n}{v_n} + 3}}\).
Đề bài
Cho các dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) thỏa mãn \(\lim {u_n} = 2,\lim \left( {{u_n} - {v_n}} \right) = 4\). Tìm \(\lim \frac{{3{u_n} - {v_n}}}{{{u_n}{v_n} + 3}}\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết
Ta có: \(\lim \left( {{u_n} - {v_n}} \right) = 4 \Rightarrow \lim {u_n} - \lim {v_n} = 4 \Rightarrow \lim {v_n} = \lim {u_n} - 4 = 2 - 4 = - 2\)
Do đó, \(\lim \frac{{3{u_n} - {v_n}}}{{{u_n}{v_n} + 3}} = \frac{{3\lim {u_n} - \lim {v_n}}}{{\lim {u_n}\lim {v_n} + 3}} = \frac{{3.2 - \left( { - 2} \right)}}{{2.\left( { - 2} \right) + 3}} = \frac{8}{{ - 1}} = - 8\)
Bài 2 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và kỹ năng vẽ đồ thị để tìm ra đáp án chính xác.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài tập: Giải phương trình lượng giác: 2sin(x) - 1 = 0
Lời giải:
2sin(x) - 1 = 0
2sin(x) = 1
sin(x) = 1/2
x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)
Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 2 trang 93 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tập tốt!