Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 57 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_{n + 1}} = - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).
Đề bài
Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_{n + 1}} = - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cách xác định dãy số bằng công thức số hạng tổng quát \({u_n}\) để dự đoán số hạng tổng quát của dãy số: Tính một vài số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) rồi từ đó dự đoán công thức \({u_n}\) theo n.
Lời giải chi tiết
Ta có: \({u_1} = - 2 = \frac{{ - 2}}{1};\)\({u_2} = - 2 - \frac{1}{{ - 2}} = \frac{{ - 3}}{2};\)\({u_3} = - 2 - \frac{1}{{\frac{{ - 3}}{2}}} = \frac{{ - 4}}{3};\)\({u_4} = - 2 - \frac{1}{{\frac{{ - 4}}{3}}} = \frac{{ - 5}}{4}\)
Do đó, dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là: \({u_n} = - \frac{{n + 1}}{n}\).
Bài 2 trang 57 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt để giải quyết các bài toán liên quan đến việc xác định phương trình hàm số và các yếu tố của nó.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài tập hiệu quả, học sinh cần:
Ví dụ: Cho hàm số y = x2 - 4x + 3. Hãy xác định tọa độ đỉnh của parabol.
Giải:
Hệ số a = 1, b = -4, c = 3.
Hoành độ đỉnh: x = -b/2a = -(-4)/(2*1) = 2.
Tung độ đỉnh: y = (2)2 - 4(2) + 3 = 4 - 8 + 3 = -1.
Vậy tọa độ đỉnh của parabol là (2; -1).
Để củng cố kiến thức, các em có thể tự giải thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Trong quá trình học tập, nếu gặp khó khăn, các em đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè. Hãy chủ động tìm kiếm các nguồn tài liệu tham khảo khác nhau để mở rộng kiến thức. Chúc các em học tập tốt!
Công thức | Mô tả |
---|---|
x = -b/2a | Hoành độ đỉnh của parabol |
y = -Δ/4a | Tung độ đỉnh của parabol |
Δ = b2 - 4ac | Biệt thức của phương trình bậc hai |