Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 7 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 7 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 7 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 1 trang 7 trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2.

Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tính giá trị của các biểu thức sau:

Đề bài

Tính giá trị của các biểu thức sau:

a) \({\left( {\frac{1}{{\sqrt[3]{5}}}} \right)^0}\);

b) \({\left( {\frac{2}{5}} \right)^{ - 2}}\);

c) \({\left( {\frac{{ - 1}}{3}} \right)^{ - 4}}\);

d) \({\left( { - 55} \right)^0}\);

e) \({2^{ - 8}}{.2^5}\);

g) \(\frac{{{3^4}}}{{{{\left( {{3^{ - 2}}} \right)}^{ - 3}}}}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 7 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về lũy thừa với số mũ để tính:

a, d) \({a^0} = 1\)

b) \({a^{ - n}} = \frac{1}{{{a^n}}}\)

c) \({a^{ - n}} = \frac{1}{{{a^n}}},{\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

e) \({a^{ - n}} = \frac{1}{{{a^n}}}\), \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }}\), \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

g) \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }},\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\)

Lời giải chi tiết

a) \({\left( {\frac{1}{{\sqrt[3]{5}}}} \right)^0} = 1\);

b) \({\left( {\frac{2}{5}} \right)^{ - 2}} = {\left( {\frac{5}{2}} \right)^2} = \frac{{{5^2}}}{{{2^2}}} = \frac{{25}}{4}\);

c) \({\left( {\frac{{ - 1}}{3}} \right)^{ - 4}} = {\left( { - 3} \right)^4} = 81\);

d) \({\left( { - 55} \right)^0} = 1\);

e) \({2^{ - 8}}{.2^5} = {2^{ - 8 + 5}} = {2^{ - 3}} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\);

g) \(\frac{{{3^4}}}{{{{\left( {{3^{ - 2}}} \right)}^{ - 3}}}} = \frac{{{3^4}}}{{{3^{\left( { - 2} \right).\left( { - 3} \right)}}}} = \frac{{{3^4}}}{{{3^6}}} = {3^{4 - 6}} = {3^{ - 2}} = \frac{1}{9}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 7 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 7 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 1 trang 7 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết một số thông tin nhất định.

Nội dung chi tiết bài 1 trang 7

Bài 1 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định các hệ số a, b, c của hàm số bậc hai.
  • Tìm tọa độ đỉnh của parabol.
  • Xác định trục đối xứng của parabol.
  • Tìm giao điểm của parabol với trục hoành (nếu có).
  • Tìm giao điểm của parabol với trục tung.

Phương pháp giải bài tập

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Dạng tổng quát của hàm số bậc hai: y = ax2 + bx + c (a ≠ 0)
  2. Tọa độ đỉnh của parabol: xđỉnh = -b/2a, yđỉnh = -Δ/4a (với Δ = b2 - 4ac)
  3. Trục đối xứng của parabol: x = -b/2a
  4. Giao điểm của parabol với trục hoành: Giải phương trình ax2 + bx + c = 0
  5. Giao điểm của parabol với trục tung: Thay x = 0 vào phương trình hàm số.

Ví dụ minh họa

Ví dụ: Cho hàm số y = 2x2 - 8x + 6. Hãy xác định tọa độ đỉnh của parabol.

Giải:

  • a = 2, b = -8, c = 6
  • xđỉnh = -(-8)/(2*2) = 2
  • yđỉnh = -((-8)2 - 4*2*6)/(4*2) = - (64 - 48)/8 = -16/8 = -2

Vậy tọa độ đỉnh của parabol là (2; -2).

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc hai, bạn cần chú ý:

  • Xác định đúng các hệ số a, b, c.
  • Sử dụng đúng công thức tính tọa độ đỉnh và trục đối xứng.
  • Kiểm tra lại kết quả sau khi giải.
  • Vẽ đồ thị parabol để kiểm tra tính chính xác của kết quả (nếu cần).

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Ngoài ra, bạn có thể tìm kiếm thêm các bài tập trực tuyến trên giaitoan.edu.vn.

Kết luận

Bài 1 trang 7 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc hai và các yếu tố liên quan đến parabol. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập một cách hiệu quả. Chúc bạn học tốt!

Công thứcMô tả
xđỉnh = -b/2aHoành độ đỉnh của parabol
yđỉnh = -Δ/4aTung độ đỉnh của parabol
Δ = b2 - 4acBiệt thức của phương trình bậc hai

Tài liệu, đề thi và đáp án Toán 11