Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 1 trang 7 trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Tính giá trị của các biểu thức sau:
Đề bài
Tính giá trị của các biểu thức sau:
a) \({\left( {\frac{1}{{\sqrt[3]{5}}}} \right)^0}\);
b) \({\left( {\frac{2}{5}} \right)^{ - 2}}\);
c) \({\left( {\frac{{ - 1}}{3}} \right)^{ - 4}}\);
d) \({\left( { - 55} \right)^0}\);
e) \({2^{ - 8}}{.2^5}\);
g) \(\frac{{{3^4}}}{{{{\left( {{3^{ - 2}}} \right)}^{ - 3}}}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về lũy thừa với số mũ để tính:
a, d) \({a^0} = 1\)
b) \({a^{ - n}} = \frac{1}{{{a^n}}}\)
c) \({a^{ - n}} = \frac{1}{{{a^n}}},{\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)
e) \({a^{ - n}} = \frac{1}{{{a^n}}}\), \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }}\), \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)
g) \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }},\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\)
Lời giải chi tiết
a) \({\left( {\frac{1}{{\sqrt[3]{5}}}} \right)^0} = 1\);
b) \({\left( {\frac{2}{5}} \right)^{ - 2}} = {\left( {\frac{5}{2}} \right)^2} = \frac{{{5^2}}}{{{2^2}}} = \frac{{25}}{4}\);
c) \({\left( {\frac{{ - 1}}{3}} \right)^{ - 4}} = {\left( { - 3} \right)^4} = 81\);
d) \({\left( { - 55} \right)^0} = 1\);
e) \({2^{ - 8}}{.2^5} = {2^{ - 8 + 5}} = {2^{ - 3}} = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\);
g) \(\frac{{{3^4}}}{{{{\left( {{3^{ - 2}}} \right)}^{ - 3}}}} = \frac{{{3^4}}}{{{3^{\left( { - 2} \right).\left( { - 3} \right)}}}} = \frac{{{3^4}}}{{{3^6}}} = {3^{4 - 6}} = {3^{ - 2}} = \frac{1}{9}\).
Bài 1 trang 7 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết một số thông tin nhất định.
Bài 1 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ: Cho hàm số y = 2x2 - 8x + 6. Hãy xác định tọa độ đỉnh của parabol.
Giải:
Vậy tọa độ đỉnh của parabol là (2; -2).
Khi giải bài tập về hàm số bậc hai, bạn cần chú ý:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Ngoài ra, bạn có thể tìm kiếm thêm các bài tập trực tuyến trên giaitoan.edu.vn.
Bài 1 trang 7 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn hiểu rõ hơn về hàm số bậc hai và các yếu tố liên quan đến parabol. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập một cách hiệu quả. Chúc bạn học tốt!
Công thức | Mô tả |
---|---|
xđỉnh = -b/2a | Hoành độ đỉnh của parabol |
yđỉnh = -Δ/4a | Tung độ đỉnh của parabol |
Δ = b2 - 4ac | Biệt thức của phương trình bậc hai |