Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 99 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 99 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 99 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Một túi chứa 2 viên bi xanh, 5 viên bi đỏ và 3 viên bi vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên 3 viên bi từ túi. Tính xác suất của các biến cố: a) “Cả 3 viên bi lấy ra đều có cùng màu”; b) “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra”; c) “Có đúng hai màu trong 3 viên bi lấy ra”.

Đề bài

Một túi chứa 2 viên bi xanh, 5 viên bi đỏ và 3 viên bi vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên 3 viên bi từ túi. Tính xác suất của các biến cố:

a) “Cả 3 viên bi lấy ra đều có cùng màu”;

b) “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra”;

c) “Có đúng hai màu trong 3 viên bi lấy ra”.

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 99 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về quy tắc cộng hai biến cố xung khắc: Cho hai biến cố xung khắc A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\). 

Lời giải chi tiết

a) Xác suất để lấy ra cả 3 viên bi đều có màu đỏ là: \(P\left( A \right) = \frac{{C_5^3}}{{C_{10}^3}} = \frac{1}{{12}}\)

Xác suất để lấy ra cả 3 viên bi đều có màu vàng là: \(P\left( B \right) = \frac{{C_3^3}}{{C_{10}^3}} = \frac{1}{{120}}\)

Xác suất của biến cố: “Cả 3 viên bi lấy ra đều có cùng màu” là:

\(P\left( A \right) + P\left( B \right) = \frac{1}{{12}} + \frac{1}{{120}} = \frac{{11}}{{120}}\)

b) Xác suất để lấy ra 3 viên bi có 1 viên bi xanh là: \(P\left( A \right) = \frac{{C_2^1.C_8^2}}{{C_{10}^3}} = \frac{7}{{15}}\)

Xác suất để lấy ra 3 viên bi mà không có viên bi xanh là: \(P\left( B \right) = \frac{{C_8^3}}{{C_{10}^3}} = \frac{7}{{15}}\)

Xác suất của biến cố: “Có không quá 1 viên bi xanh trong 3 viên bi lấy ra” là:

\(P\left( A \right) + P\left( B \right) = \frac{7}{{15}} + \frac{7}{{15}} = \frac{{14}}{{15}}\)

c) Gọi A là biến cố: “Có đúng hai màu trong 3 viên bi lấy ra”.

Biến cố B là biến cố: “Cả 3 bi lấy ra đều có cùng màu”

Biến cố C là biến cố: “Cả 3 bi lấy ra đều có đủ 3 màu”

Khi đó, biến cố đối của biến cố A là biến cố \(B \cup C\)

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{11}}{{120}}\) (theo kết quả phần a)

Xác suất của biến cố C là: \(P\left( C \right) = \frac{{C_2^1.C_5^1.C_3^1}}{{C_{10}^3}} = \frac{1}{4}\)

Do đó, \(P\left( {\overline A } \right) = P\left( {B \cup C} \right) = P\left( B \right) + P\left( C \right) = \frac{{11}}{{120}} + \frac{1}{4} = \frac{{41}}{{120}}\)

Do đó, \(P\left( A \right) = 1 - P\left( {\overline A } \right) = \frac{{79}}{{120}}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2 trang 99 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán math. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2 trang 99 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 2 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài tập

Bài 2 trang 99 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, và các bài toán thực tế.

Lời giải chi tiết bài 2 trang 99

Để giúp bạn hiểu rõ hơn về cách giải bài 2 trang 99, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Phần 1: Tính đạo hàm của hàm số

Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

f'(x) = d/dx (3x2 + 2x - 1) = 6x + 2

Phần 2: Áp dụng quy tắc tính đạo hàm

Ví dụ: Tính đạo hàm của hàm số g(x) = sin(x2).

Lời giải:

g'(x) = d/dx (sin(x2)) = cos(x2) * d/dx (x2) = cos(x2) * 2x = 2xcos(x2)

Phần 3: Giải phương trình đạo hàm

Ví dụ: Tìm các điểm cực trị của hàm số h(x) = x3 - 3x + 2.

Lời giải:

h'(x) = 3x2 - 3

Giải phương trình h'(x) = 0, ta được x = 1 hoặc x = -1.

Vậy hàm số h(x) có hai điểm cực trị tại x = 1 và x = -1.

Phần 4: Ứng dụng đạo hàm

Ví dụ: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số k(x) = x2 - 4x + 3 trên đoạn [0; 4].

Lời giải:

k'(x) = 2x - 4

Giải phương trình k'(x) = 0, ta được x = 2.

Tính giá trị của hàm số tại các điểm x = 0, x = 2, x = 4:

  • k(0) = 3
  • k(2) = -1
  • k(4) = 3

Vậy giá trị lớn nhất của hàm số k(x) trên đoạn [0; 4] là 3, đạt được tại x = 0 và x = 4. Giá trị nhỏ nhất của hàm số k(x) trên đoạn [0; 4] là -1, đạt được tại x = 2.

Mẹo giải bài tập đạo hàm

  • Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn thức, đa thức, lượng giác, mũ, logarit.
  • Thành thạo các quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập đạo hàm mà chúng tôi đã trình bày, bạn sẽ tự tin hơn khi giải bài 2 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11