Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 61 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 61 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và \(SA \bot \left( {ABC} \right)\).

Đề bài

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và \(SA \bot \left( {ABC} \right)\).

a) Chứng minh rằng \(\left( {SBC} \right) \bot \left( {SAB} \right)\).

b) Gọi M là trung điểm của AC. Chứng minh rằng \(\left( {SBM} \right) \bot \left( {SAC} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải chi tiết

Giải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

a) Vì tam giác vuông cân tại B nên \(AB \bot BC\)

Lại có: \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\)

Do đó, \(BC \bot \left( {SAB} \right)\), mà \(BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\)

b) Vì tam giác vuông cân tại B nên BM là đường trung tuyến đồng thời là đường cao.

Do đó, \(BM \bot AC\)

Lại có: \(SA \bot \left( {ABC} \right),BM \subset \left( {ABC} \right) \Rightarrow SA \bot BM\)

Do đó, \(BM \bot \left( {SAC} \right)\), mà \(BM \subset \left( {SBM} \right) \Rightarrow \left( {SBM} \right) \bot \left( {SAC} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 61 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 3 trang 61 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, và các hàm số hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các hệ số trong biểu thức đạo hàm.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Phương pháp giải bài tập

Để giải bài 3 trang 61 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn cần:

  1. Nắm vững các quy tắc tính đạo hàm cơ bản: đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit, và các quy tắc cộng, trừ, nhân, chia, hợp hàm.
  2. Phân tích cấu trúc của hàm số để lựa chọn phương pháp tính đạo hàm phù hợp.
  3. Thực hiện các phép biến đổi đại số một cách cẩn thận để tránh sai sót.
  4. Kiểm tra lại kết quả bằng cách thay các giá trị cụ thể vào biểu thức đạo hàm.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(2x).

Giải:

g'(x) = d/dx (sin(2x))

g'(x) = cos(2x) * d/dx (2x) (Sử dụng quy tắc chuỗi)

g'(x) = 2cos(2x)

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, bạn cần chú ý đến các điểm sau:

  • Đảm bảo rằng bạn đã nắm vững các định nghĩa và quy tắc đạo hàm cơ bản.
  • Sử dụng đúng các ký hiệu toán học và quy tắc biến đổi đại số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể thực hành với các bài tập sau:

  1. Tính đạo hàm của hàm số h(x) = x3 - 4x + 5.
  2. Tìm đạo hàm của hàm số k(x) = cos(x) + sin(x).
  3. Tính đạo hàm của hàm số l(x) = ex + ln(x).

Kết luận

Bài 3 trang 61 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự trong chương trình học.

Bảng tổng hợp các quy tắc đạo hàm cơ bản

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)
f(x) = exf'(x) = ex
f(x) = ln(x)f'(x) = 1/x

Tài liệu, đề thi và đáp án Toán 11