Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 8 trang 94 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn học sinh. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 9}}{{\left| {x + 3} \right|}}\;khi\;x \ne - 3\\\;\;\;\;a\;\;\;\;\,khi\;x = - 3\end{array} \right.\) a) Tìm \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right)\). b) Với giá trị nào của a thì hàm số liên tục tại \(x = - 3\).
Đề bài
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 9}}{{\left| {x + 3} \right|}}\;khi\;x \ne - 3\\\;\;\;\;a\;\;\;\;\,khi\;x = - 3\end{array} \right.\)
a) Tìm \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right)\).
b) Với giá trị nào của a thì hàm số liên tục tại \(x = - 3\).
Phương pháp giải - Xem chi tiết
a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ + } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
Cho \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ - } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
b) Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết
a) Ta có: \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} - 9}}{{\left| {x + 3} \right|}} = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} - 9}}{{x + 3}} = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x + 3}} = \mathop {\lim }\limits_{x \to - {3^ + }} \left( {x - 3} \right) = - 6\)
\(\mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} - 9}}{{\left| {x + 3} \right|}} = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} - 9}}{{ - x - 3}} = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{ - \left( {x + 3} \right)}} = \mathop {\lim }\limits_{x \to - {3^ - }} \left( {3 - x} \right) = 6\)
Do đó, \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right) = - 6 - 6 = - 12\)
b) Theo a ta có: \(\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = - 6,\mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right) = 6 \Rightarrow \mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right)\). Do đó, không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to - 3} f\left( x \right)\). Vậy không có giá trị nào của a để hàm số f(x) liên tục.
Bài 8 trang 94 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng, và các yếu tố ảnh hưởng đến hình dạng của parabol để giải quyết các bài toán cụ thể.
Bài 8 bao gồm các dạng bài tập sau:
Để xác định các yếu tố của parabol, ta thực hiện các bước sau:
Phương trình parabol có dạng y = a(x - xđỉnh)2 + yđỉnh = a(x + 1)2 + 2.
Thay tọa độ điểm A(1; 6) vào phương trình, ta có: 6 = a(1 + 1)2 + 2 => 6 = 4a + 2 => 4a = 4 => a = 1.
Vậy phương trình parabol là y = (x + 1)2 + 2 = x2 + 2x + 3.
Bài 8 trang 94 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai và parabol. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các bạn học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.