Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp S. ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của các SA và CD. a) Chứng minh (OMN)//(SBC). b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF//(SBD).

Đề bài

Cho hình chóp S. ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của các SA và CD.

a) Chứng minh (OMN)//(SBC).

b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF//(SBD). 

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về điều kiện để hai mặt phẳng song song để chứng minh: Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì (P) song song với (Q). 

Lời giải chi tiết

Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

a) Vì ABCD là hình bình hành tâm O nên O là trung điểm của AC, BD.

Vì M, O lần lượt là trung điểm của SA và AC nên MO là đường trung bình của tam giác SAC, suy ra MO//SC. Mà \(SC \subset \left( {SBC} \right)\), MO không nằm trong mặt phẳng (SBC) nên MO//(SBC)

Vì N, O lần lượt là trung điểm của CD và BD nên NO là đường trung bình của tam giác BCD, suy ra NO//BC. Mà \(BC \subset \left( {SBC} \right)\), NO không nằm trong mặt phẳng (SBC) nên NO//(SBC).

Vì MO//(SBC), NO//(SBC), NO và MO cắt nhau tại O và nằm trong mặt phẳng (MNO) nên (OMN)//(SBC).

b) Đề sai vì EF nằm trong mặt phẳng (SBD) rồi nên EF không song song với mặt phẳng (SBD).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác.

Nội dung bài tập

Bài 2 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác.
  • Tìm tập giá trị của hàm số lượng giác.
  • Xét tính chẵn, lẻ của hàm số lượng giác.
  • Vẽ đồ thị hàm số lượng giác.
  • Giải phương trình lượng giác.
  • Ứng dụng hàm số lượng giác vào giải quyết các bài toán thực tế.

Lời giải chi tiết bài 2 trang 127

Để giải bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài tập, các dữ kiện đã cho và các kết quả cần tìm.
  2. Vận dụng kiến thức: Sử dụng các định nghĩa, tính chất, công thức và phương pháp đã học để phân tích bài toán.
  3. Thực hiện các phép tính: Thực hiện các phép tính toán học cần thiết để tìm ra kết quả.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tìm được là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa:

Giả sử bài 2 yêu cầu tìm tập xác định của hàm số y = tan(2x). Để giải bài này, chúng ta cần nhớ rằng hàm số tan(x) xác định khi cos(x) ≠ 0. Do đó, hàm số y = tan(2x) xác định khi cos(2x) ≠ 0. Điều này tương đương với 2x ≠ π/2 + kπ, với k là số nguyên. Suy ra, x ≠ π/4 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số y = tan(2x) là D = R \ {π/4 + kπ/2, k ∈ Z}.

Các lưu ý khi giải bài tập

Khi giải bài tập toán 11 - Chân trời sáng tạo tập 1, bạn cần lưu ý những điều sau:

  • Nắm vững các định nghĩa, tính chất và công thức của hàm số lượng giác.
  • Luyện tập vẽ đồ thị hàm số lượng giác để hiểu rõ hơn về tính chất của chúng.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo và các bài giải trên mạng để mở rộng kiến thức.

Ứng dụng của kiến thức

Kiến thức về hàm số lượng giác và đồ thị có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:

  • Vật lý: Mô tả các hiện tượng dao động, sóng.
  • Kỹ thuật: Thiết kế các mạch điện, xử lý tín hiệu.
  • Tin học: Xử lý ảnh, âm thanh.

Tổng kết

Bài 2 trang 127 sách bài tập toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác và đồ thị. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn toán.

Hàm sốTập xác địnhTập giá trị
y = sin(x)R[-1, 1]
y = cos(x)R[-1, 1]
y = tan(x)R \ {π/2 + kπ, k ∈ Z}R

Tài liệu, đề thi và đáp án Toán 11