Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 50 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Tính góc giữa AB và DM.
Đề bài
Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Tính góc giữa AB và DM.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa hai đường thẳng trong không gian để tính: Góc giữa hai đường thẳng a, b trong không gian, kí hiệu (a, b), là góc giữa hai đường thẳng \(a'\) và \(b'\) cùng đi qua một điểm và lần lượt song song hoặc trùng với a và b.
Góc giữa hai đường thẳng nhận giá trị từ \({0^0}\) đến \({90^0}\).
Lời giải chi tiết
Gọi độ dài cạnh của tứ diện đều ABCD là 2a nên \(MB = MC = \frac{{BC}}{2} = a\)
Gọi N là trung điểm của AC nên \(NA = NC = \frac{{AC}}{2} = a\)
Vì MN là đường trung bình của tam giác ABC nên MN//AB
Do đó, \(\left( {AB,DM} \right) = \left( {MN,MD} \right) = \widehat {NMD}\)
Tam giác CBD đều nên MD là đường trung tuyến đồng thời là đường cao.
Do đó, \(MD \bot BC\). Áp dụng định lí Pythagore vào tam giác MDC vuông tại M có: \(MD = \sqrt {C{D^2} - M{C^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)
Tam giác ADC đều nên ND là đường trung tuyến đồng thời là đường cao.
Do đó, \(ND \bot AC\). Áp dụng định lí Pythagore vào tam giác NDC vuông tại N có: \(ND = \sqrt {C{D^2} - N{C^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)
Tam giác MND có: \(ND = MD\) nên tam giác MND cân tại D.
Gọi H là trung điểm của MN.
Suy ra DH là đường là đường trung tuyến đồng thời là đường cao của tam giác MND.
Vì MN là đường trung bình của tam giác ABC nên \(MN = \frac{{BA}}{2} = a \Rightarrow MH = \frac{{MN}}{2} = \frac{a}{2}\)
Tam giác MHD vuông tại H có: \(\cos \widehat {HMD} = \frac{{MH}}{{MD}} = \frac{{\frac{a}{2}}}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{6} \Rightarrow \widehat {NMD} \approx 73,{2^0}\)
Bài 1 trang 50 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 50 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, chúng ta cần thực hiện các bước sau:
Ví dụ: Xét hàm số y = sin(2x). Để xác định tập xác định của hàm số, ta thấy rằng hàm sin(x) xác định với mọi x thuộc R. Do đó, hàm số y = sin(2x) cũng xác định với mọi x thuộc R. Tập xác định của hàm số là D = R.
Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp bạn giải bài tập về hàm số lượng giác hiệu quả hơn:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Bài 1 trang 50 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với lời giải chi tiết và các kiến thức liên quan được cung cấp trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.
Hàm số | Tập xác định | Tập giá trị |
---|---|---|
y = sin(x) | R | [-1, 1] |
y = cos(x) | R | [-1, 1] |
y = tan(x) | R \ {π/2 + kπ, k ∈ Z} | R |