Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Chu vi của một đa giác là 213cm, số đo các cạnh của nó lập thành cấp số cộng với công sai \(d = 7cm\) và cạnh lớn nhất bằng 53cm. Tính số cạnh của đa giác đó.

Đề bài

Chu vi của một đa giác là 213cm, số đo các cạnh của nó lập thành cấp số cộng với công sai \(d = 7cm\) và cạnh lớn nhất bằng 53cm. Tính số cạnh của đa giác đó.

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về tổng của n số hạng đầu tiên của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\), khi đó \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hay \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết

Gọi số cạnh của đa giác là n \(\left( {n \in \mathbb{N}*} \right)\).

Số đo các cạnh của đa giác là \({u_1};{u_2};..;{u_n}\) (với \({u_1} < {u_2} < .. < {u_n}\))

Ta có: \(\left\{ \begin{array}{l}{u_1} + {u_2} + ... + {u_n} = 213\\{u_n} = 53\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{n}{2}\left( {{u_1} + {u_n}} \right) = 213\\{u_n} = 53\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n\left( {{u_1} + 53} \right) = 426\\{u_1} + \left( {n - 1} \right)d = 53\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n\left( {{u_1} + 53} \right) = 426\\{u_1} + 7\left( {n - 1} \right) = 53\end{array} \right.\)

Suy ra: \(n\left[ {53 - 7\left( {n - 1} \right) + 53} \right] = 426 \Leftrightarrow n\left( {113 - 7n} \right) = 426\)

\( \Leftrightarrow 7{n^2} - 113n + 426 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 6\left( {TM} \right)\\n = \frac{{71}}{7}\left( {KTM} \right)\end{array} \right.\)

Vậy đa giác trên có 6 cạnh.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan và Phương pháp giải

Bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa hàm số bậc hai: y = ax2 + bx + c (a ≠ 0)
  • Đồ thị hàm số bậc hai: Parabol, đỉnh, trục đối xứng, giao điểm với trục hoành và trục tung.
  • Các phép biến đổi hàm số: Tịnh tiến, đối xứng.
  • Điều kiện để hàm số có cực trị.

Bài 3 thường yêu cầu học sinh xác định các yếu tố của parabol, tìm tọa độ đỉnh, trục đối xứng, và vẽ đồ thị hàm số. Ngoài ra, bài toán có thể yêu cầu học sinh tìm điều kiện để hàm số có nghiệm, hoặc giải các bài toán liên quan đến ứng dụng của hàm số bậc hai.

Lời giải chi tiết bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

(Ở đây sẽ là nội dung giải chi tiết bài 3, bao gồm các bước giải, phân tích, và giải thích rõ ràng. Nội dung này sẽ được trình bày chi tiết với các ví dụ minh họa và các lưu ý quan trọng. Ví dụ:)

Ví dụ: Cho hàm số y = x2 - 4x + 3. Hãy tìm:

  1. Tọa độ đỉnh của parabol.
  2. Trục đối xứng của parabol.
  3. Giao điểm của parabol với trục hoành.
  4. Giao điểm của parabol với trục tung.

Giải:

  • Tọa độ đỉnh: xđỉnh = -b/2a = -(-4)/(2*1) = 2. yđỉnh = (2)2 - 4(2) + 3 = -1. Vậy tọa độ đỉnh là (2, -1).
  • Trục đối xứng: x = 2.
  • Giao điểm với trục hoành: Giải phương trình x2 - 4x + 3 = 0. Ta được x1 = 1, x2 = 3. Vậy giao điểm là (1, 0) và (3, 0).
  • Giao điểm với trục tung: Thay x = 0 vào phương trình, ta được y = 3. Vậy giao điểm là (0, 3).

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 3 trang 65, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Để giải quyết các bài tập này, học sinh có thể áp dụng các phương pháp sau:

  • Sử dụng công thức: Nắm vững các công thức liên quan đến hàm số bậc hai, như công thức tính tọa độ đỉnh, trục đối xứng, và nghiệm của phương trình bậc hai.
  • Vẽ đồ thị: Vẽ đồ thị hàm số giúp học sinh hình dung rõ hơn về tính chất của hàm số và dễ dàng tìm ra lời giải.
  • Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các dữ kiện đã cho.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về hàm số bậc hai, học sinh nên luyện tập thêm các bài tập khác trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập và lời giải chi tiết, giúp các em học sinh tự tin hơn trong quá trình học tập.

Kết luận

Bài 3 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc hai. Bằng cách nắm vững kiến thức cơ bản, áp dụng các phương pháp giải phù hợp, và luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11