Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền Bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung. a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt,
Đề bài
Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền Bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung.
a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam hoặc miền Trung”.
b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Hai đoàn viên được gặp cùng đến từ miền Bắc hoặc cùng đến từ miền Nam”.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về biến cố hợp: Cho hai biến cố A và B. Biến cố “A hoặc B xảy ra”, kí hiệu là \(A \cup B\), được gọi là biến cố hợp của A và B.
Sử dụng kiến thức về quy tắc cộng hai biến cố xung khắc: Cho hai biến cố xung khắc A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Lời giải chi tiết
a) Xác suất để gặp được 1 đoàn viên đến từ miền Nam là: \(P\left( A \right) = \frac{{19}}{{63}}\)
Xác suất để gặp được 1 đoàn viên đến từ miền Trung là: \(P\left( B \right) = \frac{{19}}{{63}}\)
Xác suất để gặp được 1 đoàn viên đến từ miền Trung hoặc miền Nam là:
\(P\left( A \right) + P\left( B \right) = \frac{{19}}{{63}} + \frac{{19}}{{63}} = \frac{{38}}{{63}}\)
b) Xác suất để gặp được 2 đoàn viên cùng đến từ miền Nam là: \(P\left( A \right) = \frac{{C_{19}^2}}{{C_{63}^2}} = \frac{{19}}{{217}}\)
Xác suất để gặp được 2 đoàn viên cùng đến từ miền Bắc là: \(P\left( B \right) = \frac{{C_{25}^2}}{{C_{63}^2}} = \frac{{100}}{{651}}\)
Xác suất để gặp được 2 đoàn viên cùng đến từ miền Bắc hoặc miền Nam là:
\(P\left( A \right) + P\left( B \right) = \frac{{19}}{{217}} + \frac{{100}}{{651}} = \frac{{157}}{{651}}\)
Bài 1 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và quy tắc này là vô cùng quan trọng để thành công trong môn Toán 11.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
f'(x) = d(3x2)/dx + d(2x)/dx - d(1)/dx
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến hoặc tham gia các khóa học luyện thi để nâng cao kỹ năng giải toán.
Bài 1 trang 99 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán 11.
Hàm số | Đạo hàm |
---|---|
f(x) = xn | f'(x) = nxn-1 |
f(x) = c (hằng số) | f'(x) = 0 |
f(x) = u(x) + v(x) | f'(x) = u'(x) + v'(x) |