Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 68 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 4 trang 68 một cách cẩn thận, kèm theo các bước giải chi tiết và giải thích rõ ràng.

Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.

Đề bài

Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về khoảng cách giữa hai đường thẳng chéo nhau để tính: Khoảng cách giữa hai đường thẳng chéo nhau a và b bằng khoảng cách giữa một trong hai đường thẳng đến mặt phẳng song song với nó và chứa đường thẳng còn lại. 

Lời giải chi tiết

Giải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Gọi O là tâm của tam giác đều BCD. Khi đó, \(AO \bot \left( {BCD} \right)\)

Qua C kẻ đường thẳng song song với BI cắt BD tại F. Khi đó, CF//BI nên BI//(ACF)

Suy ra: \(d\left( {AC,BI} \right) = d\left( {BI,\left( {ACF} \right)} \right) = d\left( {O,\left( {ACF} \right)} \right)\)

Ta có: \(BI \bot CD,CF//BI \) \( \Rightarrow CF \bot CD\)

Qua O kẻ đường thẳng song song với CD cắt CF tại E. Ta có: \(OE//CD \) \( \Rightarrow OE\; \bot CF\)

Vì \(OE\; \bot CF,CF \bot AO\left( {do\;AO \bot \left( {BCD} \right)} \right) \) \( \Rightarrow CF \bot \left( {AOE} \right)\)

Trong (AOE), kẻ \(OH \bot AE\left( {H \in AC} \right) \) \( \Rightarrow OH \bot \left( {ACF} \right) \) \( \Rightarrow d\left( {O,\left( {ACF} \right)} \right) = OH\)

Chứng minh được tứ giác OICE là hình chữ nhật. Suy ra \(OE = CI = \frac{{CD}}{2} = \frac{{\sqrt {11} }}{2}\)

Tam giác BCD đều, BI là đường trung tuyến đồng thời là đường cao của tam giác nên \(BI = \frac{{BC\sqrt 3 }}{2} = \frac{{\sqrt {33} }}{2} \) \( \Rightarrow BO = \frac{2}{3}BI = \frac{{\sqrt {33} }}{3}\)

Vì \(AO \bot \left( {BCD} \right) \) \( \Rightarrow AO \bot BO,AO \bot OE\).

Áp dụng định lí Pythagore vào tam giác ABO vuông tại O có: \(AO = \sqrt {A{B^2} - B{O^2}} = \frac{{\sqrt {66} }}{3}\)

Tam giác AOE vuông tại O, đường cao OH có: \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{E^2}}} = \frac{9}{{66}} + \frac{4}{{11}} = \frac{1}{2}\)

Do đó, \(OH = \sqrt 2 \)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4 trang 68 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Cụ thể, bài tập thường liên quan đến việc tìm đạo hàm của các hàm số lượng giác, hàm hợp, hoặc áp dụng đạo hàm để tìm cực trị của hàm số.

Nội dung bài 4 trang 68

Bài 4 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một phép toán cụ thể liên quan đến đạo hàm. Các câu hỏi có thể có dạng:

  • Tính đạo hàm của hàm số f(x) = ...
  • Tìm đạo hàm cấp hai của hàm số g(x) = ...
  • Tìm các điểm cực trị của hàm số h(x) = ...
  • Lập bảng biến thiên của hàm số y = ...

Phương pháp giải bài 4 trang 68

Để giải bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số lượng giác (sin x, cos x, tan x, cot x), đạo hàm của hàm số mũ, logarit, và các quy tắc đạo hàm (quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp).
  2. Vận dụng quy tắc đạo hàm: Sử dụng quy tắc đạo hàm để tính đạo hàm của các hàm số phức tạp.
  3. Tìm cực trị của hàm số: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  4. Lập bảng biến thiên: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số và lập bảng biến thiên.

Ví dụ minh họa giải bài 4 trang 68

Ví dụ: Tính đạo hàm của hàm số f(x) = sin(2x) + cos(x).

Giải:

f'(x) = (sin(2x))' + (cos(x))'

f'(x) = cos(2x) * 2 - sin(x)

f'(x) = 2cos(2x) - sin(x)

Lưu ý khi giải bài 4 trang 68

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng các công thức đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo
  • Sách bài tập Toán 11 - Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11