Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải bài 4 trang 68 một cách cẩn thận, kèm theo các bước giải chi tiết và giải thích rõ ràng.
Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.
Đề bài
Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khoảng cách giữa hai đường thẳng chéo nhau để tính: Khoảng cách giữa hai đường thẳng chéo nhau a và b bằng khoảng cách giữa một trong hai đường thẳng đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
Lời giải chi tiết
Gọi O là tâm của tam giác đều BCD. Khi đó, \(AO \bot \left( {BCD} \right)\)
Qua C kẻ đường thẳng song song với BI cắt BD tại F. Khi đó, CF//BI nên BI//(ACF)
Suy ra: \(d\left( {AC,BI} \right) = d\left( {BI,\left( {ACF} \right)} \right) = d\left( {O,\left( {ACF} \right)} \right)\)
Ta có: \(BI \bot CD,CF//BI \) \( \Rightarrow CF \bot CD\)
Qua O kẻ đường thẳng song song với CD cắt CF tại E. Ta có: \(OE//CD \) \( \Rightarrow OE\; \bot CF\)
Vì \(OE\; \bot CF,CF \bot AO\left( {do\;AO \bot \left( {BCD} \right)} \right) \) \( \Rightarrow CF \bot \left( {AOE} \right)\)
Trong (AOE), kẻ \(OH \bot AE\left( {H \in AC} \right) \) \( \Rightarrow OH \bot \left( {ACF} \right) \) \( \Rightarrow d\left( {O,\left( {ACF} \right)} \right) = OH\)
Chứng minh được tứ giác OICE là hình chữ nhật. Suy ra \(OE = CI = \frac{{CD}}{2} = \frac{{\sqrt {11} }}{2}\)
Tam giác BCD đều, BI là đường trung tuyến đồng thời là đường cao của tam giác nên \(BI = \frac{{BC\sqrt 3 }}{2} = \frac{{\sqrt {33} }}{2} \) \( \Rightarrow BO = \frac{2}{3}BI = \frac{{\sqrt {33} }}{3}\)
Vì \(AO \bot \left( {BCD} \right) \) \( \Rightarrow AO \bot BO,AO \bot OE\).
Áp dụng định lí Pythagore vào tam giác ABO vuông tại O có: \(AO = \sqrt {A{B^2} - B{O^2}} = \frac{{\sqrt {66} }}{3}\)
Tam giác AOE vuông tại O, đường cao OH có: \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{E^2}}} = \frac{9}{{66}} + \frac{4}{{11}} = \frac{1}{2}\)
Do đó, \(OH = \sqrt 2 \)
Bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Cụ thể, bài tập thường liên quan đến việc tìm đạo hàm của các hàm số lượng giác, hàm hợp, hoặc áp dụng đạo hàm để tìm cực trị của hàm số.
Bài 4 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một phép toán cụ thể liên quan đến đạo hàm. Các câu hỏi có thể có dạng:
Để giải bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách hiệu quả, bạn cần nắm vững các kiến thức và kỹ năng sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = sin(2x) + cos(x).
Giải:
f'(x) = (sin(2x))' + (cos(x))'
f'(x) = cos(2x) * 2 - sin(x)
f'(x) = 2cos(2x) - sin(x)
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 4 trang 68 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!