Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 68 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ bạn trong việc học Toán 11. Hãy cùng theo dõi và giải bài tập này cùng với chúng tôi!
Cho hình chóp tam giác S.ABC có tam giác ABC vuông cân tại B, \(AC = a\sqrt 2 \), mặt phẳng (SAC) vuông góc với mặt đáy (ABC).
Đề bài
Cho hình chóp tam giác S.ABC có tam giác ABC vuông cân tại B, \(AC = a\sqrt 2 \), mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng \({60^0}\). Tính theo a thể tích V của khối chóp S. ABC
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về thể tích hình chóp: Thể tích hình chóp bằng một phần ba diện tích đáy nhân với chiều cao: \(V = \frac{1}{3}S.h\)
Lời giải chi tiết
Trong mặt phẳng (SAC), vẽ \(SH \bot AC\left( {H \in AC} \right)\). Vì \(\left( {SAC} \right) \bot \left( {ABC} \right)\) và AC là giao tuyến của hai mặt phẳng (SAC) và (ABC) nên \(SH \bot \left( {ABC} \right)\).
Gọi I, K lần lượt là hình chiếu vuông góc của H lên AB và BC.
Khi đó, \(\left( {\left( {SAB} \right),\left( {ABC} \right)} \right) = \widehat {SIH} = {60^0}\), \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SKH} = {60^0}\)
Chứng minh được \(\Delta SHI = \Delta SHK\left( {cgv - gn} \right) \) \(\Rightarrow HI = HK\)
Tứ giác BIHK có: \(\widehat {IBK} = \widehat {BKH} = \widehat {BIH} = {90^0}\) và \(HI = HK\) nên tứ giác BIHK là hình vuông. Suy ra, H là trung điểm của AC. Khi đó, tứ giác BIHK là hình vuông cạnh \(\frac{a}{2}\).
Tam giác SHI vuông tại H nên \(SH = HI.\tan \widehat {SIH} = \frac{{a\sqrt 3 }}{2}\)
Do đó, thể tích V của khối chóp S.ABC là: \(V = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}}}{2}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{{12}}\)
Bài 5 trang 68 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức và quy tắc đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 5 trang 68 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 68 sách bài tập Toán 11 Chân trời sáng tạo tập 2, bạn cần thực hiện theo các bước sau:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.
Giải:
f'(x) = 2x + 2
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).
Giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))
g'(x) = cos2(x) - sin2(x)
Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).
Hàm số | Đạo hàm |
---|---|
f(x) = c (hằng số) | f'(x) = 0 |
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |
Bài 5 trang 68 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong môn Toán 11.