Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi bài giải dưới đây để nắm vững kiến thức Toán 11 nhé!

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \sqrt x \left( {{x^2} - \sqrt x + 1} \right)\);

b) \(y = \frac{1}{{{x^2} - 3x + 1}}\);

c) \(y = \frac{{2x + 3}}{{3x + 2}}\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về các quy tắc tính đạo hàm để tính:

a) \(\left( {u \pm v} \right)' = u' \pm v',\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số.

b, c) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\) , \(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right)\)

Lời giải chi tiết

a) Vì \(y \) \( = \sqrt x \left( {{x^2} - \sqrt x + 1} \right) \) \( = {x^{\frac{5}{2}}} - x + \sqrt x \) nên \(y' \) \( = {\left( {{x^{\frac{5}{2}}} - x + \sqrt x } \right)'} \) \( = \frac{5}{2}{x^{\frac{3}{2}}} - 1 + \frac{1}{{2\sqrt x }} \) \( = \frac{5}{2}x\sqrt x - 1 + \frac{1}{{2\sqrt x }}\)

b) \(y' \) \( = {\left( {\frac{1}{{{x^2} - 3x + 1}}} \right)'} \) \( = \frac{{1'\left( {{x^2} - 3x + 1} \right) - 1.\left( {{x^2} - 3x + 1} \right)'}}{{{{\left( {{x^2} - 3x + 1} \right)}^2}}} \) \( = \frac{{ - 2x + 3}}{{{{\left( {{x^2} - 3x + 1} \right)}^2}}}\)

c) \(y' \) \( = {\left( {\frac{{2x + 3}}{{3x + 2}}} \right)'} \) \( = \frac{{\left( {2x + 3} \right)'\left( {3x + 2} \right) - \left( {2x + 3} \right)\left( {3x + 2} \right)'}}{{{{\left( {3x + 2} \right)}^2}}} \) \( = \frac{{2\left( {3x + 2} \right) - 3\left( {2x + 3} \right)}}{{{{\left( {3x + 2} \right)}^2}}}\) \( = \frac{{6x + 4 - 6x - 9}}{{{{\left( {3x + 2} \right)}^2}}} \) \( = \frac{{ - 5}}{{{{\left( {3x + 2} \right)}^2}}}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập

Bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Lời giải chi tiết bài 4 trang 45

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2, chúng tôi xin trình bày lời giải chi tiết như sau:

Phần 1: Đề bài

(Giả sử đề bài cụ thể của bài 4 trang 45 được trình bày ở đây. Ví dụ: Tính đạo hàm của hàm số f(x) = x^2 + 2x - 1 tại x = 2)

Phần 2: Phân tích đề bài

Để giải bài tập này, chúng ta cần xác định rõ yêu cầu của đề bài. Trong trường hợp này, yêu cầu là tính đạo hàm của hàm số f(x) tại x = 2. Điều này có nghĩa là chúng ta cần tìm f'(2).

Phần 3: Phương pháp giải

Để tính đạo hàm của hàm số f(x) tại x = 2, chúng ta có thể sử dụng các bước sau:

  1. Tính đạo hàm f'(x) của hàm số f(x).
  2. Thay x = 2 vào f'(x) để tính f'(2).

Phần 4: Lời giải chi tiết

Bước 1: Tính đạo hàm f'(x) của hàm số f(x) = x^2 + 2x - 1.

Sử dụng quy tắc đạo hàm của tổng và đạo hàm của lũy thừa, ta có:

f'(x) = 2x + 2

Bước 2: Thay x = 2 vào f'(x) để tính f'(2).

f'(2) = 2 * 2 + 2 = 6

Vậy, đạo hàm của hàm số f(x) = x^2 + 2x - 1 tại x = 2 là 6.

Các lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, các em học sinh cần lưu ý những điều sau:

  • Nắm vững các khái niệm cơ bản về đạo hàm.
  • Hiểu rõ các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính tốc độ thay đổi của một đại lượng.
  • Tìm cực trị của hàm số.
  • Giải các bài toán tối ưu hóa.

Kết luận

Bài 4 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức Toán học. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 11