Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 6 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với \(AB = AC = a,\widehat {BAC} = {120^0}\),

Đề bài

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giáccân với \(AB = AC = a,\widehat {BAC} = {120^0}\), mặt phẳng (AB’C’) tạo với đáy một góc \({60^0}\). Tính thể tích V của khối lăng trụ đã cho.

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.

+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)

Lời giải chi tiết

Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Kẻ \(A'I \bot B'C'\left( {I \in B'C'} \right)\). Vì \(AA' \bot \left( {A'B'C'} \right) \Rightarrow AA' \bot B'C'\)

Vì \(AA' \bot B'C',A'I \bot B'C' \Rightarrow B'C' \bot \left( {A'AI} \right) \Rightarrow B'C' \bot AI\)

Ta có: \(B'C' \bot AI,A'I \bot B'C',AI \subset \left( {AB'C'} \right),A'I \subset \left( {A'B'C'} \right)\) và B’C’ là giao tuyến của (AB’C’) và (A’B’C’). Do đó, \(\left( {\left( {AB'C'} \right),\left( {A'B'C'} \right)} \right) = \left( {A'I,AI} \right) = \widehat {A'IA} = {60^0}\)

Tam giác A’B’C’ cân tại A’ nên A’I là đường cao đồng thời là đường phân giác nên \(\widehat {B'A'I} = \frac{1}{2}\widehat {B'A'C'} = {60^0}\)

Tam giác B’A’I vuông tại I nên \(A'I = A'B'.\cos \widehat {B'A'I} = a.\cos {60^0} = \frac{1}{2}a\)

Vì \(AA' \bot \left( {A'B'C'} \right) \Rightarrow AA' \bot A'I\). Do đó, tam giác A’AI vuông tại A’.

Do đó, \(A'A = A'I.\tan \widehat {AIA'} = \frac{a}{2}.\tan {60^0} = \frac{{a\sqrt 3 }}{2}\)

Thể tích lăng trụ ABC.A’B’C’ là:

\({V_{ABC.A'B'C'}} \) \( = A'A.{S_{A'B'C'}} \) \( = \frac{1}{2}A'A.AB.AC\sin \widehat {BAC} \) \( = \frac{1}{2}\frac{{a\sqrt 3 }}{2}.a.a.\sin {120^0} \) \( = \frac{{3{a^2}}}{8}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6 trang 76 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 6 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và công thức liên quan là rất quan trọng để hoàn thành bài tập này một cách chính xác.

Nội dung bài tập

Bài 6 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị).

Hướng dẫn giải chi tiết

Để giải bài 6 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, bạn cần thực hiện theo các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm hoặc khảo sát.
  2. Chọn công thức đạo hàm phù hợp: Dựa vào dạng của hàm số, chọn công thức đạo hàm tương ứng (ví dụ: đạo hàm của hàm số lũy thừa, đạo hàm của hàm số lượng giác, đạo hàm của hàm hợp).
  3. Tính đạo hàm: Áp dụng công thức đạo hàm đã chọn để tính đạo hàm của hàm số. Lưu ý thực hiện các phép toán một cách cẩn thận để tránh sai sót.
  4. Kiểm tra kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách thay các giá trị cụ thể vào hàm số và đạo hàm để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Các lưu ý quan trọng

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra kết quả.
  • Đọc kỹ đề bài và hiểu rõ yêu cầu trước khi bắt đầu giải.

Mở rộng kiến thức

Để hiểu sâu hơn về đạo hàm, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11.
  • Sách bài tập Toán 11.
  • Các trang web học toán online uy tín.
  • Các video bài giảng về đạo hàm trên YouTube.

Kết luận

Bài 6 trang 76 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!

Bảng tổng hợp công thức đạo hàm cơ bản

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin xf'(x) = cos x
f(x) = cos xf'(x) = -sin x

Tài liệu, đề thi và đáp án Toán 11