Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 84 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Sử dụng định nghĩa, tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} \); c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{4 - x}}{{2x + 1}}\).
Đề bài
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right)\);
b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} \);
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{4 - x}}{{2x + 1}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa giới hạn để tính: Cho điểm \({x_0}\) thuộc khoảng K và hàm số \(y = f\left( x \right)\) có giới hạn hữu hạn là số L khi x dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), thì \(f\left( {{x_n}} \right) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) hay \(f\left( x \right) \to L\) khi \(x \to {x_0}\).
Lời giải chi tiết
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \ne - 1\) với mọi n và \({x_n} \to - 1\) khi \(n \to + \infty \).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^3 - 3{x_n}} \right) = \lim x_n^3 - 3\lim {x_n} = {\left( { - 1} \right)^3} - 3.\left( { - 1} \right) = 2\)
Vậy \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right) = 2\);
b) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \ge \frac{{ - 5}}{2},{x_n} \ne 2\) với mọi n và \(\lim {x_n} = 2\)
Ta có: \(\lim \sqrt {2{x_n} + 5} = \sqrt {2\lim {x_n} + \lim 5} = \sqrt {2.2 + 5} = 3\)
Vậy \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} = 3\);
c) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = + \infty \).
Ta có: \(\lim \frac{{4 - {x_n}}}{{2{x_n} + 1}}\)\( = \lim \frac{{\frac{4}{{{x_n}}} - 1}}{{2 + \frac{1}{{{x_n}}}}}\)\( = \frac{{\lim \frac{4}{{{x_n}}} - \lim 1}}{{\lim 2 + \lim \frac{1}{{{x_n}}}}}\)\( = \frac{{0 - 1}}{{2 + 0}} = \frac{{ - 1}}{2}\)
Vậy \(\mathop {\lim }\limits_{x \to + \infty } \frac{{4 - x}}{{2x + 1}} = \frac{{ - 1}}{2}\).
Bài 1 trang 84 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán thực tế. Việc nắm vững các công thức lượng giác, tính chất của hàm số và kỹ năng biến đổi đại số là rất quan trọng để hoàn thành bài tập này.
Bài 1 trang 84 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 1 trang 84 sách bài tập Toán 11 - Chân trời sáng tạo tập 1, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi trong bài 1, trang 84. Ví dụ:)
Câu a) yêu cầu tìm tập xác định của hàm số y = tan(2x + π/3). Để hàm số có nghĩa, ta cần điều kiện 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Giải phương trình này, ta được x ≠ π/12 + kπ/2, với k là số nguyên. Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2, k ∈ Z}.
Khi giải bài tập về hàm số lượng giác, các em cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng, các em có thể làm thêm các bài tập tương tự sau:
Bài 1 trang 84 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số lượng giác. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn sẽ tiếp tục cập nhật và cung cấp các lời giải bài tập Toán 11 một cách nhanh chóng và chính xác nhất. Chúc các em học tập tốt!