Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 131 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Bài 4 trang 131 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh tính đạo hàm, tìm cực trị, và vẽ đồ thị hàm số.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 131, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Vẽ hình biểu diễn của các vật sau.

Đề bài

Vẽ hình biểu diễn của các vật sau.

Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

Sử dụng kiến thức về hình biểu diễn của một hình trong không gian để vẽ: Hình biểu diễn của một hình H trong không gian là hình chiếu song song của H trên mặt phẳng theo một phương chiếu nào đó hoặc hình đồng dạng với hình chiếu đó.

Lời giải chi tiết

a) Hình biểu diễn:

Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1 3

b) Hình biểu diễn:

Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1 4

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4 trang 131 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4 trang 131 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 4 trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Cụ thể, bài toán yêu cầu học sinh phân tích hàm số, tìm điểm cực trị, và xác định khoảng đồng biến, nghịch biến của hàm số. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.

Phân tích đề bài và phương pháp giải

Để giải bài 4 trang 131 một cách hiệu quả, học sinh cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần phân tích.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm cấp nhất của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Xác định loại điểm cực trị: Sử dụng dấu của đạo hàm cấp hai hoặc phương pháp xét dấu đạo hàm cấp nhất để xác định xem các điểm nghi ngờ là điểm cực đại hay cực tiểu.
  5. Xác định khoảng đồng biến, nghịch biến: Dựa vào dấu của đạo hàm cấp nhất để xác định khoảng đồng biến và nghịch biến của hàm số.
  6. Vẽ đồ thị hàm số: Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số.

Lời giải chi tiết bài 4 trang 131

Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.)

Lời giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xác định loại điểm cực trị:
    • y'' = 6x - 6
    • Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0, ymax = 2
    • Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2, ymin = -2
  4. Kết luận: Hàm số đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 4 trang 131, sách bài tập Toán 11 Chân trời sáng tạo tập 1 còn nhiều bài tập tương tự về đạo hàm và ứng dụng của đạo hàm. Để giải tốt các bài tập này, học sinh cần:

  • Nắm vững các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, đạo hàm của các hàm số lượng giác, hàm mũ, hàm logarit.
  • Rèn luyện kỹ năng giải phương trình: Giải phương trình đạo hàm bằng 0 để tìm điểm cực trị.
  • Hiểu rõ ý nghĩa của đạo hàm: Đạo hàm biểu thị tốc độ biến thiên của hàm số.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm không chỉ là một công cụ quan trọng trong Toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác như:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Tổng kết

Bài 4 trang 131 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững các khái niệm, kỹ năng và phương pháp giải, học sinh có thể tự tin giải quyết các bài tập tương tự và ứng dụng kiến thức này vào thực tế.

Tài liệu, đề thi và đáp án Toán 11