Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 75 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Tìm các giới hạn sau: a) \(\lim \frac{{2n - 3}}{{6n + 1}}\); b) \(\lim \frac{{3n - 1}}{{{n^2} + n}}\); c) \(\lim \frac{{\left( {2n - 1} \right)\left( {2n + 3} \right)}}{{2{n^2} + 4}}\); d) \(\lim \frac{{4n + 1}}{{\sqrt {{n^2} + 3n} + n}}\); e) \(\lim \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\); g) \(\lim \frac{1}{{\sqrt {{n^2} + n} - n}}\).
Đề bài
Tìm các giới hạn sau:
a) \(\lim \frac{{2n - 3}}{{6n + 1}}\);
b) \(\lim \frac{{3n - 1}}{{{n^2} + n}}\);
c) \(\lim \frac{{\left( {2n - 1} \right)\left( {2n + 3} \right)}}{{2{n^2} + 4}}\);
d) \(\lim \frac{{4n + 1}}{{\sqrt {{n^2} + 3n} + n}}\);
e) \(\lim \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\);
g) \(\lim \frac{1}{{\sqrt {{n^2} + n} - n}}\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết
a) \(\lim \frac{{2n - 3}}{{6n + 1}}\)\( = \lim \frac{{2 - \frac{3}{n}}}{{6 + \frac{1}{n}}}\)\( = \frac{{\lim 2 - \lim \frac{3}{n}}}{{\lim 6 + \lim \frac{1}{n}}}\)\( = \frac{{2 - 0}}{{6 + 0}} = \frac{1}{3}\);
b) \(\lim \frac{{3n - 1}}{{{n^2} + n}}\)\( = \lim \frac{{\frac{3}{n} - \frac{1}{{{n^2}}}}}{{1 + \frac{1}{n}}}\)\( = \frac{{\lim \frac{3}{n} - \lim \frac{1}{{{n^2}}}}}{{\lim 1 + \lim \frac{1}{n}}}\)\( = \frac{0}{{1 + 0}} = 0\);
c) \(\lim \frac{{\left( {2n - 1} \right)\left( {2n + 3} \right)}}{{2{n^2} + 4}}\)\( = \lim \frac{{\left( {2 - \frac{1}{n}} \right)\left( {2 + \frac{3}{n}} \right)}}{{2 + \frac{4}{{{n^2}}}}}\)\( = \frac{{\lim \left( {2 - \frac{1}{n}} \right)\lim \left( {2 + \frac{3}{n}} \right)}}{{\lim \left( {2 + \frac{4}{{{n^2}}}} \right)}}\)\( = \frac{{2.2}}{2} = 2\);
d) \(\lim \frac{{4n + 1}}{{\sqrt {{n^2} + 3n} + n}}\)\( = \lim \frac{{4 + \frac{1}{n}}}{{\sqrt {1 + \frac{3}{n}} + 1}}\)\( = \frac{{4 + \lim \frac{1}{n}}}{{\sqrt {1 + \lim \frac{3}{n}} + 1}}\)\( = \frac{4}{{1 + 1}} = 2\);
e) \(\lim \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\)\( = \lim \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\)\( = \lim \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\)
\( = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}} + \sqrt 1 }}\)\( = \frac{1}{{\sqrt {1 + \lim \frac{1}{n}} + 1}} = \frac{1}{2}\)
g) \(\lim \frac{1}{{\sqrt {{n^2} + n} - n}}\)\( = \lim \frac{{\sqrt {{n^2} + n} + n}}{{\left( {\sqrt {{n^2} + n} - n} \right)\left( {\sqrt {{n^2} + n} + n} \right)}}\)\( = \lim \frac{{\sqrt {{n^2} + n} + n}}{n}\)\( = \lim \frac{{\sqrt {1 + \frac{1}{n}} + 1}}{1}\)\( = \frac{{\sqrt {1 + \lim \frac{1}{n}} + 1}}{1} = 2\)
Bài 2 trang 75 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác trong thực tế.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 75 sách bài tập Toán 11 - Chân trời sáng tạo tập 1, bạn cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 2 trang 75:
...
...
...
Khi giải bài tập về hàm số lượng giác, bạn cần lưu ý những điều sau:
Hàm số lượng giác có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 2 trang 75 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!