Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau: Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.
Đề bài
Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:
Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)
Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)
Lời giải chi tiết
Cỡ mẫu \(n = 78\)
Gọi \({x_1},{x_2},...,{x_{78}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_5} \in \left[ {75;80} \right),{x_6},...,{x_{17}} \in \left[ {80;85} \right),{x_{18}},...,{x_{35}} \in \left[ {85;90} \right),{x_{36}},...,{x_{59}} \in \left[ {90;95} \right),\)
\({x_{60}},...,{x_{78}} \in \left[ {95;100} \right)\).
Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ hai của mẫu số liệu là \(\frac{1}{2}\left( {{x_{39}} + {x_{40}}} \right)\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {90;95} \right)\).
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:
\({Q_2} = 90 + \frac{{\frac{{78}}{2} - \left( {5 + 12 + 18} \right)}}{{24}}.\left( {95 - 90} \right) = \frac{{545}}{6}\)
Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ nhất của mẫu số liệu là \({x_{20}}\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {85;90} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 85 + \frac{{\frac{{78}}{4} - \left( {5 + 12} \right)}}{{18}}.\left( {90 - 85} \right) = \frac{{3085}}{{36}}\)
Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ ba của mẫu số liệu là \({x_{59}}\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {90;95} \right)\).
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 90 + \frac{{\frac{{3.78}}{4} - \left( {5 + 12 + 18} \right)}}{{24}}.\left( {95 - 90} \right) = \frac{{4\;555}}{{48}}\)
Bài 2 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc hiểu rõ các tính chất và công thức liên quan đến các phép biến hình là chìa khóa để giải quyết bài tập này một cách hiệu quả.
Bài 2 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 2 trang 158, chúng ta sẽ đi vào phân tích từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 2, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Giải thích chi tiết từng bước giải, sử dụng công thức và tính chất liên quan.
Giải thích chi tiết từng bước giải, sử dụng công thức và tính chất liên quan.
Để giải quyết bài tập này một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là một số mẹo giúp các em giải bài tập về phép biến hình một cách hiệu quả:
Để củng cố kiến thức, các em có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và những kiến thức, mẹo giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn trong việc giải bài 2 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Chúc các em học tập tốt!