Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 5 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 45 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{{x\sin x}}{{1 - \tan x}}\);

b) \(y = \cos \sqrt {{x^2} - x + 1} \);

c) \(y = {\sin ^2}3x\);

d) \(y = {\cos ^2}\left( {\cos 3x} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính:

a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {uv} \right)' = u'v + uv'\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)

b) \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\), \(\left( {\sqrt {u\left( x \right)} } \right)' = \frac{{u'\left( x \right)}}{{2\sqrt {u\left( x \right)} }}\)

c) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\),\(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

d) \(\left( {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right)' = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]'\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right),\) \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

Lời giải chi tiết

a) \(y' \) \(= {\left( {\frac{{x\sin x}}{{1 - \tan x}}} \right)'} \) \(= \frac{{\left( {x\sin x} \right)'\left( {1 - \tan x} \right) - \left( {x\sin x} \right)\left( {1 - \tan x} \right)'}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\left( {\sin x + x\cos x} \right)\left( {1 - \tan x} \right) + \left( {x\sin x} \right)\frac{1}{{{{\cos }^2}x}}}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\sin x + x\cos x - \sin x\tan x - x\sin x + \frac{{x\sin x}}{{{{\cos }^2}x}}}}{{{{\left( {1 - \tan x} \right)}^2}}}\) \(= \frac{{\sin x + x\cos x - \sin x\tan x - x\sin x\left( {1 - \frac{1}{{{{\cos }^2}x}}} \right)}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

\(= \frac{{\sin x + x\cos x - \sin x\tan x + x\sin x{{\tan }^2}x}}{{{{\left( {1 - \tan x} \right)}^2}}}\)

b) \(y' \) \(= {\left( {\cos \sqrt {{x^2} - x + 1} } \right)'} \) \(= - \left( {\sqrt {{x^2} - x + 1} } \right)'\sin \sqrt {{x^2} - x + 1} \) \(= - \frac{{\left( {{x^2} - x + 1} \right)'}}{{2\sqrt {{x^2} - x + 1} }}\sin \sqrt {{x^2} - x + 1} \)

\(= - \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\sin \sqrt {{x^2} - x + 1} \)

c) \(y' \) \(= {\left( {{{\sin }^2}3x} \right)'} \) \(= 2\sin 3x\left( {\sin 3x} \right)' \) \(= 6\sin 3x\cos 3x \) \(= 3\sin 6x\)

d) \(y' \) \(= {\left[ {{{\cos }^2}\left( {\cos 3x} \right)} \right]'} \) \(= 2\cos \left( {\cos 3x} \right)\left[ {\cos \left( {\cos 3x} \right)} \right]'\)\(= - 2\cos \left( {\cos 3x} \right)\sin \left( {\cos 3x} \right)\left( {\cos 3x} \right)' \) \(= 6\cos \left( {\cos 3x} \right)\sin \left( {\cos 3x} \right)\sin 3x\)

\(= 3\sin \left( {2\cos 3x} \right)\sin 3x\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 5 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 5 trang 45 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, và các hàm số hợp. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho việc giải quyết các bài toán cụ thể mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.

Nội dung bài tập

Bài 5 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị).

Lời giải chi tiết bài 5 trang 45

Để giải bài 5 trang 45 sách bài tập Toán 11 - Chân trời sáng tạo tập 2, chúng ta cần thực hiện theo các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Chọn quy tắc tính đạo hàm phù hợp: Dựa vào dạng của hàm số, chọn quy tắc tính đạo hàm phù hợp (quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, đạo hàm của hàm lượng giác, đạo hàm của hàm mũ, logarit,...).
  3. Áp dụng quy tắc: Áp dụng quy tắc đã chọn để tính đạo hàm của hàm số.
  4. Rút gọn: Rút gọn biểu thức đạo hàm để có kết quả cuối cùng.

Ví dụ minh họa

Bài toán: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Các lưu ý khi giải bài tập

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi tính đạo hàm.
  • Sử dụng máy tính cầm tay để kiểm tra kết quả (nếu cần thiết).

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa các thiết kế, quy trình sản xuất.
  • Thống kê: Phân tích dữ liệu, dự đoán xu hướng.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo.
  • Sách bài tập Toán 11 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về đạo hàm trên YouTube.

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 5 trang 45 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11