Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 85 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó. a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}}\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).
Đề bài
Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó.
a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}}\);
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giới hạn một phía để tính:
+ Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\)
+ Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) \ne \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).
Lời giải chi tiết
a) Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} x = 0\); \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{ - x}} = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{\left| x \right|}} = 0\) nên \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}} = 0\);
b) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{x\left( {x - 2} \right)}}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - x} \right) = - 2\);
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x\left( {x - 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} x = 2\)
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} \ne \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).
Bài 8 trang 85 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về phép biến hình. Bài tập này tập trung vào việc vận dụng các kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các tính chất và công thức liên quan đến các phép biến hình là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.
Bài 8 bao gồm các dạng bài tập sau:
Đề bài: Cho điểm A(1; 2). Tìm ảnh A' của điểm A qua phép tịnh tiến theo vectơ v = (3; -1).
Lời giải:
Gọi A'(x'; y') là ảnh của điểm A qua phép tịnh tiến theo vectơ v. Khi đó, ta có:
x' = x + vx = 1 + 3 = 4
y' = y + vy = 2 + (-1) = 1
Vậy, A'(4; 1).
Đề bài: Cho đường thẳng d: x + 2y - 3 = 0. Tìm ảnh d' của đường thẳng d qua phép quay tâm O, góc 90°.
Lời giải:
Gọi M(x; y) là một điểm bất kỳ trên đường thẳng d. Gọi M'(x'; y') là ảnh của M qua phép quay tâm O, góc 90°. Khi đó, ta có:
x' = -y
y' = x
Thay x = y' và y = -x' vào phương trình đường thẳng d, ta được:
y' + 2(-x') - 3 = 0
=> -2x' + y' - 3 = 0
Vậy, phương trình đường thẳng d' là: -2x + y - 3 = 0.
Các em có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về chương trình học:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin hơn khi giải bài 8 trang 85 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Chúc các em học tập tốt!