Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 27 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 27 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các bạn. Hãy cùng theo dõi và luyện tập để nắm vững kiến thức Toán 11 nhé!

Cho hàm số \(y = \sin x\) với \(x \in \left[ { - 2\pi ;2\pi } \right]\). a) Vẽ đồ thị hàm số đã cho. b) Tìm các giá trị của \(x \in \left[ {\frac{{ - 5\pi }}{3};\frac{{7\pi }}{3}} \right]\) sao cho \(\sin \left( {\frac{\pi }{3} - x} \right) = - 1\).

Đề bài

Cho hàm số \(y = \sin x\) với \(x \in \left[ { - 2\pi ;2\pi } \right]\).

a) Vẽ đồ thị hàm số đã cho.

b) Tìm các giá trị của \(x \in \left[ {\frac{{ - 5\pi }}{3};\frac{{7\pi }}{3}} \right]\) sao cho \(\sin \left( {\frac{\pi }{3} - x} \right) = - 1\).

c) Tìm các giá trị của \(x \in \left[ {\frac{{ - 9\pi }}{8};\frac{{7\pi }}{8}} \right]\) sao cho \(\sin \left( {2x + \frac{\pi }{4}} \right) > 0\).

d) Tìm m để có bốn giá trị \(\alpha \in \left[ { - 2\pi ;2\pi } \right]\) phân biệt thỏa mãn \(\sin \alpha = m\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về đồ thị hàm số \(y = \sin x\) để giải.

Lời giải chi tiết

a) Ta có đồ thị hàm số \(y = \sin x\) với \(x \in \left[ { - 2\pi ;2\pi } \right]\):

Giải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

b) Đặt \(\frac{\pi }{3} - x = t\). Vì \(\frac{{ - 5\pi }}{3} \le x \le \frac{{7\pi }}{3} \Rightarrow - 2\pi \le t \le 2\pi \).

Từ đồ thị hàm số trong phần a, ta có: \(\sin t = - 1\) khi và chỉ khi \(t = \frac{{ - \pi }}{2}\) hoặc \(t = \frac{{3\pi }}{2}\)

Do đó, \(\frac{\pi }{3} - x = \frac{{ - \pi }}{2}\) hoặc \(\frac{\pi }{3} - x = \frac{{3\pi }}{2}\). Suy ra: \(x = \frac{{5\pi }}{6}\) hoặc \(x = \frac{{ - 7\pi }}{6}\)

c) Đặt \(2x + \frac{\pi }{4} = t\). Vì \(\frac{{ - 9\pi }}{8} \le x \le \frac{{7\pi }}{8} \Rightarrow - 2\pi \le t \le 2\pi \).

Từ đồ thị hàm số trong phần a, ta có: \(\sin t > 0\) khi và chỉ khi \( - 2\pi < t < - \pi \) hoặc \(0 < t < \pi \)

Suy ra: \( - 2\pi < 2x + \frac{\pi }{4} < - \pi \) hoặc \(0 < 2x + \frac{\pi }{4} < \pi \)

Do đó, \(\frac{{ - 9\pi }}{8} \le x \le \frac{{ - 5\pi }}{8}\) hoặc \(\frac{{ - \pi }}{8} \le x \le \frac{{3\pi }}{8}\)

d) Có bốn giá trị \(\alpha \in \left[ { - 2\pi ;2\pi } \right]\) phân biệt thỏa mãn \(\sin \alpha = m\) khi và chỉ khi đường thẳng \(y = m\) cắt đồ thị hàm số \(y = \sin \alpha \) tại bốn điểm. Từ đồ thị hàm số ở trên, điều này xảy ra khi và chỉ khi \( - 1 < m < 0\) hoặc \(0 < m < 1\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4 trang 27 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 4 trang 27 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết các yếu tố khác nhau.

Nội dung chi tiết bài 4 trang 27

Bài 4 bao gồm các câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh cụ thể của việc xác định phương trình parabol. Cụ thể:

  • Câu a: Xác định phương trình parabol có đỉnh I(1; 2) và đi qua điểm A(3; 6).
  • Câu b: Xác định phương trình parabol có đỉnh I(-1; -2) và đi qua điểm B(0; -1).
  • Câu c: Xác định phương trình parabol có trục đối xứng x = -2 và đi qua hai điểm C(1; 3) và D(-5; 3).
  • Câu d: Xác định phương trình parabol có trục đối xứng x = 3 và đi qua hai điểm E(1; -2) và F(5; -2).

Phương pháp giải bài 4 trang 27

Để giải bài 4 trang 27, học sinh cần nắm vững các công thức và phương pháp sau:

  1. Phương trình tổng quát của parabol: y = ax2 + bx + c (a ≠ 0)
  2. Phương trình chính tắc của parabol: y = a(x - h)2 + k, trong đó (h; k) là tọa độ đỉnh của parabol.
  3. Trục đối xứng của parabol: x = h
  4. Cách xác định hệ số a: Thay tọa độ của một điểm thuộc parabol vào phương trình để tìm a.

Lời giải chi tiết bài 4 trang 27

Câu a:

Ta có phương trình parabol có dạng: y = a(x - 1)2 + 2. Thay tọa độ điểm A(3; 6) vào phương trình, ta được:

6 = a(3 - 1)2 + 2

6 = 4a + 2

4a = 4

a = 1

Vậy phương trình parabol là: y = (x - 1)2 + 2 = x2 - 2x + 3

Câu b:

Tương tự như câu a, ta có phương trình parabol có dạng: y = a(x + 1)2 - 2. Thay tọa độ điểm B(0; -1) vào phương trình, ta được:

-1 = a(0 + 1)2 - 2

-1 = a - 2

a = 1

Vậy phương trình parabol là: y = (x + 1)2 - 2 = x2 + 2x - 1

Câu c:

Ta có phương trình parabol có dạng: y = a(x + 2)2 + k. Thay tọa độ điểm C(1; 3) và D(-5; 3) vào phương trình, ta được hệ phương trình:

3 = a(1 + 2)2 + k

3 = a(-5 + 2)2 + k

Giải hệ phương trình này, ta được a = 0 và k = 3. Tuy nhiên, a ≠ 0 nên có lẽ đề bài có sai sót. Nếu trục đối xứng là x = -2 và hai điểm C, D có cùng tung độ thì parabol là đường thẳng y = 3. Tuy nhiên, theo định nghĩa parabol thì a phải khác 0. Giả sử đề bài đúng, ta có thể tìm ra một parabol thỏa mãn điều kiện này.

3 = 9a + k

3 = 9a + k

Từ đây suy ra k = 3 - 9a. Thay vào phương trình y = a(x+2)^2 + k, ta có y = a(x+2)^2 + 3 - 9a.

Câu d:

Tương tự như câu c, ta có phương trình parabol có dạng: y = a(x - 3)2 + k. Thay tọa độ điểm E(1; -2) và F(5; -2) vào phương trình, ta được hệ phương trình:

-2 = a(1 - 3)2 + k

-2 = a(5 - 3)2 + k

Giải hệ phương trình này, ta được a = 0 và k = -2. Tương tự như câu c, nếu trục đối xứng là x = 3 và hai điểm E, F có cùng tung độ thì parabol là đường thẳng y = -2. Tuy nhiên, theo định nghĩa parabol thì a phải khác 0. Giả sử đề bài đúng, ta có thể tìm ra một parabol thỏa mãn điều kiện này.

-2 = 4a + k

-2 = 4a + k

Từ đây suy ra k = -2 - 4a. Thay vào phương trình y = a(x-3)^2 + k, ta có y = a(x-3)^2 - 2 - 4a.

Kết luận

Bài 4 trang 27 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về parabol và phương pháp xác định phương trình parabol. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các bạn học sinh sẽ tự tin hơn khi giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11