Logo Header
  1. Môn Toán
  2. Giải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 9 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 9 trang 65 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Một tháp 10 tầng có diện tích sàn của tầng dưới cùng là \(6\;144{m^2}\). Tính diện tích mặt sàn tầng trên cùng, biết rằng diện tích mặt sàn mỗi tầng bằng nửa diện tích mặt sàn tầng ngay bên dưới.

Đề bài

Một tháp 10 tầng có diện tích sàn của tầng dưới cùng là \(6\;144{m^2}\). Tính diện tích mặt sàn tầng trên cùng, biết rằng diện tích mặt sàn mỗi tầng bằng nửa diện tích mặt sàn tầng ngay bên dưới.

Giải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\). 

Lời giải chi tiết

Gọi diện tích mặt sàn tầng n là \({u_n}\left( {n \in \mathbb{N}*} \right)\).

Dãy \(\left( {{u_n}} \right)\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 6\;144\) và công bội \(q = \frac{1}{2}\).

Do đó, số hạng tổng quát của dãy số là: \({u_n} = 6\;144.{\left( {\frac{1}{2}} \right)^{n - 1}}\).

Diện tích mặt sàn tầng trên cùng là: \({u_{10}} = {u_1}.{q^9} = 6\;144.{\left( {\frac{1}{2}} \right)^9} = 12\left( {{m^2}} \right)\)

Vậy diện tích mặt sàn tầng trên cùng là \(12{m^2}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9 trang 65 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 9 trang 65 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, các phép biến đổi lượng giác cơ bản và phương pháp giải phương trình lượng giác để tìm ra nghiệm.

Nội dung bài tập

Bài 9 trang 65 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Yêu cầu học sinh xác định khoảng giá trị của x để hàm số có nghĩa.
  • Tìm tập giá trị của hàm số lượng giác: Yêu cầu học sinh tìm khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  • Giải phương trình lượng giác: Yêu cầu học sinh tìm nghiệm của phương trình lượng giác.

Lời giải chi tiết bài 9 trang 65

Để giải bài 9 trang 65 sách bài tập Toán 11 - Chân trời sáng tạo tập 1, chúng ta cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài tập.
  2. Áp dụng kiến thức: Sử dụng các kiến thức về hàm số lượng giác, các phép biến đổi lượng giác và phương pháp giải phương trình lượng giác.
  3. Thực hiện các phép tính: Thực hiện các phép tính một cách chính xác.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả của bạn là chính xác.

Ví dụ:

Giải phương trình: 2sin(x) - 1 = 0

Lời giải:

2sin(x) - 1 = 0

sin(x) = 1/2

x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)

Mẹo giải bài tập hàm số lượng giác

Để giải bài tập hàm số lượng giác một cách hiệu quả, bạn có thể áp dụng các mẹo sau:

  • Nắm vững các công thức lượng giác cơ bản: Các công thức lượng giác cơ bản là nền tảng để giải các bài tập về hàm số lượng giác.
  • Sử dụng các phép biến đổi lượng giác: Các phép biến đổi lượng giác giúp đơn giản hóa bài toán và tìm ra nghiệm.
  • Vẽ đồ thị hàm số: Vẽ đồ thị hàm số giúp bạn hình dung được sự biến thiên của hàm số và tìm ra nghiệm.
  • Luyện tập thường xuyên: Luyện tập thường xuyên giúp bạn nắm vững kiến thức và kỹ năng giải bài tập.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Giải phương trình: cos(x) = √3/2
  • Tìm tập xác định của hàm số: y = tan(x)
  • Khảo sát sự biến thiên của hàm số: y = sin(2x)

Kết luận

Bài 9 trang 65 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi cung cấp, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.

Công thứcMô tả
sin2(x) + cos2(x) = 1Công thức lượng giác cơ bản
tan(x) = sin(x) / cos(x)Định nghĩa hàm tan

Tài liệu, đề thi và đáp án Toán 11