Logo Header
  1. Môn Toán
  2. Giải bài 10 trang 32 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 10 trang 32 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 10 trang 32 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 10 trang 32 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Chiều cao h(m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức (hleft( t right) = 30 + 20sin left( {frac{pi }{{25}}t + frac{pi }{3}} right)).

Đề bài

Chiều cao h(m) của một cabin trên vòng quay vào thời điểm t giây sau khi bắt đầu chuyển động được cho bởi công thức \(h\left( t \right) = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\).

a) Cabin đạt độ cao tối đa là bao nhiêu?

b) Sau bao nhiêu giây thì cabin đạt độ cao 40m lần đầu tiên?

Phương pháp giải - Xem chi tiếtGiải bài 10 trang 32 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

a) Sử dụng kiến thức về hàm số lượng giác: \(\sin x \le 1\) với mọi số thực x.

b) Sử dụng kiến thức về phương trình lượng giác cơ bản để giải: Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\).

Lời giải chi tiết

a) Vì \(\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 1 \Rightarrow 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \le 50\).

Do đó, cabin đạt độ cao tối đa là 50m.

b) Thời gian để cabin đạt độ cao 40m lần đầu tiên là nghiệm của phương trình \(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right)\) với \(t > 0\) và t là giá trị nhỏ nhất.

\(40 = 30 + 20\sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \frac{1}{2} \) \( \Leftrightarrow \sin \left( {\frac{\pi }{{25}}t + \frac{\pi }{3}} \right) = \sin \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{25}}t + \frac{\pi }{3} = \frac{\pi }{6} + k2\pi \\\frac{\pi }{{25}}t + \frac{\pi }{3} = \pi - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 25}}{6} + k50\\t = \frac{{25}}{2} + k50\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

+) Xét \(t = \frac{{ - 25}}{6} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{ - 25}}{6} + k50 > 0 \) \( \Leftrightarrow k > \frac{1}{{12}}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{ - 25}}{6} + 1.50 = \frac{{275}}{6}\) (với \(k = 1\)).

+) Xét \(t = \frac{{25}}{2} + k50\left( {k \in \mathbb{Z}} \right)\) và \(t > 0\) ta có: \(\frac{{25}}{2} + k50 > 0 \) \( \Leftrightarrow k > \frac{{ - 1}}{4}\). Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;...} \right\}\). Mà t đạt giá trị dương nhỏ nhất nên \(t = \frac{{25}}{2} + 0.50 = 12,5\) (với \(k = 0\)).

Vì \(\frac{{275}}{6} > 12,5\) nên sau 12,5 giây thì cabin đạt độ cao 40m lần đầu tiên.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 10 trang 32 sách bài tập toán 11 - Chân trời sáng tạo tập 1 – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 10 trang 32 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 10 trang 32 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc tìm phương trình parabol khi biết các yếu tố khác nhau.

Nội dung bài tập

Bài 10 thường bao gồm các dạng bài tập sau:

  • Tìm phương trình parabol khi biết đỉnh và một điểm thuộc parabol.
  • Tìm phương trình parabol khi biết ba điểm thuộc parabol.
  • Xác định các yếu tố của parabol (đỉnh, trục đối xứng, tiêu điểm, đường chuẩn) từ phương trình.
  • Lập phương trình parabol thỏa mãn các điều kiện cho trước.

Phương pháp giải bài tập

Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Phương trình tổng quát của parabol: y = ax2 + bx + c (a ≠ 0)
  2. Phương trình chính tắc của parabol: y = ax2 (a ≠ 0)
  3. Công thức tính tọa độ đỉnh của parabol: xđỉnh = -b/2a, yđỉnh = -Δ/4a (với Δ = b2 - 4ac)
  4. Phương pháp thay thế: Thay tọa độ các điểm đã biết vào phương trình parabol để tìm các hệ số a, b, c.
  5. Phương pháp sử dụng hệ phương trình: Lập hệ phương trình dựa trên các điều kiện cho trước và giải hệ phương trình để tìm các hệ số a, b, c.

Ví dụ minh họa

Ví dụ 1: Tìm phương trình parabol có đỉnh I(1; -2) và đi qua điểm A(3; 2).

Lời giải:

Phương trình parabol có dạng: y = a(x - 1)2 - 2. Thay tọa độ điểm A(3; 2) vào phương trình, ta có:

2 = a(3 - 1)2 - 2

2 = 4a - 2

4a = 4

a = 1

Vậy phương trình parabol là: y = (x - 1)2 - 2 = x2 - 2x - 1.

Luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Ngoài ra, bạn có thể tham khảo các bài giảng trực tuyến và các tài liệu học tập khác để nâng cao trình độ.

Mẹo giải nhanh

  • Khi biết đỉnh của parabol, hãy sử dụng phương trình y = a(x - xđỉnh)2 + yđỉnh.
  • Khi biết ba điểm thuộc parabol, hãy lập hệ phương trình bậc hai để tìm các hệ số a, b, c.
  • Luôn kiểm tra lại kết quả bằng cách thay các giá trị đã tìm được vào phương trình parabol.

Kết luận

Bài 10 trang 32 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn hiểu sâu hơn về hàm số bậc hai và các ứng dụng của nó. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả.

Dạng bài tậpPhương pháp giải
Tìm phương trình parabol khi biết đỉnh và một điểmSử dụng phương trình y = a(x - xđỉnh)2 + yđỉnh và thay tọa độ điểm đã biết.
Tìm phương trình parabol khi biết ba điểmLập hệ phương trình bậc hai và giải hệ phương trình.

Tài liệu, đề thi và đáp án Toán 11