Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 34 sách bài tập Toán 11 - Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó. a) \(y = 3\sin x + 2\tan \frac{x}{3}\); b) \(y = \cos x\sin \frac{{\pi - x}}{2}\).
Đề bài
Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó.
a) \(y = 3\sin x + 2\tan \frac{x}{3}\);
b) \(y = \cos x\sin \frac{{\pi - x}}{2}\).
Phương pháp giải - Xem chi tiết
- Sử dụng kiến thức về tính chẵn lẻ của hàm số để xét tính chẵn lẻ của hàm số để chứng minh: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là:
+ Hàm số chẵn nếu với mọi \(x \in D\) ta có: \( - x \in D\) và \(f\left( { - x} \right) = f\left( x \right)\).
+ Hàm số lẻ nếu với mọi \(x \in D\) ta có: \( - x \in D\) và \(f\left( { - x} \right) = - f\left( x \right)\).
- Sử dụng kiến thức về hàm số tuần hoàn để chứng minh: Hàm số \(y = f\left( x \right)\) với tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số \(T \ne 0\) sao cho với mọi \(x \in D\) ta có \(x \pm T \in D\) và \(f\left( {x + T} \right) = f\left( T \right)\). Số dương T nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn \(y = f\left( x \right)\).
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{{3\pi }}{2} + k3\pi \left| {k \in \mathbb{Z}} \right.} \right\}\)
Vì \(x \pm 6\pi \in D\) với mọi \(x \in D\) và
\(3\sin \left( {x + 6\pi } \right) + 2\tan \frac{{x + 6\pi }}{3} = 3\sin x + 2\tan \left( {\frac{x}{3} + 2\pi } \right) = 3\sin x + 2\tan \frac{x}{3}\)
Do đó, hàm số \(y = 3\sin x + 2\tan \frac{x}{3}\) là hàm số tuần hoàn.
Vì \( - x \in D\) với mọi \(x \in D\) và
\(3\sin \left( { - x} \right) + 2\tan \frac{{ - x}}{3} = - 3\sin x - 2\tan \frac{x}{3} = - \left( {3\sin x + 2\tan \frac{x}{3}} \right)\)
Suy ra hàm số \(y = 3\sin x + 2\tan \frac{x}{3}\) là hàm số lẻ.
b) Tập xác định của hàm số \(y = \cos x\sin \frac{{\pi - x}}{2}\) là: \(D = \mathbb{R}\)
Vì \(x \pm 4\pi \in D\) với mọi \(x \in D\) và
\(\cos \left( {x + 4\pi } \right)\sin \frac{{\pi - \left( {x + 4\pi } \right)}}{2} = \cos x\sin \left( {\frac{{\pi - x}}{2} - 2\pi } \right) = \cos x\sin \frac{{\pi - x}}{2}\)
Do đó, hàm số \(y = \cos x\sin \frac{{\pi - x}}{2}\) là hàm số tuần hoàn.
Vì \( - x \in D\) với mọi \(x \in D\) và
\(y = \cos \left( { - x} \right)\sin \frac{{\pi - \left( { - x} \right)}}{2} = \cos x\sin \left( {\pi - \frac{{\pi - x}}{2}} \right) = \cos x\sin \frac{{\pi - x}}{2}\)
Suy ra hàm số \(y = \cos x\sin \frac{{\pi - x}}{2}\) là hàm số chẵn.
Bài 2 trang 34 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết một số thông tin nhất định.
Bài 2 bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một bước trong quá trình tìm phương trình parabol. Cụ thể:
Để giải bài 2 trang 34 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Xác định phương trình parabol có đỉnh I(1, -2) và đi qua điểm A(2, 1).
Giải:
Để củng cố kiến thức về bài 2 trang 34, học sinh nên tự giải thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Đồng thời, nên tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn để hiểu rõ hơn về phương pháp giải và các kiến thức liên quan.
Bài 2 trang 34 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai và parabol. Bằng cách nắm vững các kiến thức và phương pháp giải đã trình bày trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán liên quan.