Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 162 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ bên.
Đề bài
Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ bên.
Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu đó.
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:
Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:
Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).
+ Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu.
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)
Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)
Lời giải chi tiết
Ta có bảng tần số ghép nhóm gồm các giá trị đại diện của nhóm là:
Cỡ mẫu \(n = 100\)
Số trung bình của mẫu số liệu là: \(\overline x = \frac{{12.3 + 20.5 + 37.7 + 21.9 + 11.10}}{{100}} = 6,94\)
Nhóm chứa mốt của mẫu số liệu là \(\left[ {6;8} \right)\).
Do đó, \({u_m} = 6,{u_{m + 1}} = 8,{n_m} = 37,{n_{m + 1}} = 20,{u_{m + 1}} - {u_m} = 8 - 6 = 2\)
Mốt của mẫu số liệu là: \({M_O} = 6 + \frac{{37 - 20}}{{\left( {37 - 20} \right) + \left( {37 - 21} \right)}}.2 = \frac{{232}}{{33}}\)
Gọi \({x_1},{x_2},...,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{12}} \in \left[ {2;4} \right),{x_{13}},...,{x_{32}} \in \left[ {4;6} \right),{x_{33}},...,{x_{69}} \in \left[ {6;8} \right),\) \({x_{70}},...,{x_{90}} \in \left[ {8;10} \right),{x_{90}},...,{x_{100}} \in \left[ {10;12} \right)\).
Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ hai của mẫu số liệu là \(\frac{1}{2}\left( {{x_{50}} + {x_{51}}} \right)\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {6;8} \right)\).
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:\({Q_2} = 6 + \frac{{\frac{{100}}{2} - \left( {12 + 20} \right)}}{{37}}.\left( {8 - 6} \right) = \frac{{258}}{{37}}\)
Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {4;6} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 4 + \frac{{\frac{{100}}{4} - 12}}{{20}}.\left( {6 - 4} \right) = 5,3\)
Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {8;10} \right)\).
Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 8 + \frac{{\frac{{3.100}}{4} - \left( {12 + 20 + 37} \right)}}{{21}}.\left( {10 - 8} \right) = \frac{{60}}{7}\)
Bài 5 trang 162 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, và các hàm số hợp. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho việc giải quyết các bài toán cụ thể mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.
Bài tập 5 thường bao gồm các dạng câu hỏi sau:
Để giải quyết hiệu quả bài tập 5 trang 162, bạn cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2sin(x) - 1.
Giải:
f'(x) = d/dx (3x2) + d/dx (2sin(x)) - d/dx (1)
f'(x) = 6x + 2cos(x) - 0
f'(x) = 6x + 2cos(x)
Sử dụng quy tắc đạo hàm của hàm số lũy thừa: d/dx (xn) = nxn-1.
Sử dụng các công thức đạo hàm của các hàm số lượng giác cơ bản: d/dx (sin(x)) = cos(x), d/dx (cos(x)) = -sin(x), d/dx (tan(x)) = 1/cos2(x),...
Sử dụng quy tắc đạo hàm của hàm số hợp: d/dx [f(g(x))] = f'(g(x)) * g'(x).
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 5 trang 162 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự trong tương lai.