Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 Chân trời sáng tạo tập 1 tại giaitoan.edu.vn.
Ở đây, chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho các câu hỏi trắc nghiệm trang 91, 92, 93 sách bài tập, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Hãy cùng khám phá và luyện tập ngay để đạt kết quả tốt nhất!
\(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng A. \(\frac{3}{2}\). B. \( - 2\). C. 3. D. \( - 3\).
\(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}}\) bằng
A. \(\frac{3}{2}\).
B. \( - 2\).
C. 3.
D. \( - 3\).
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết:
\(\lim \frac{{3{n^2} + 2n}}{{2 - {n^2}}} = \lim \frac{{3 + \frac{2}{n}}}{{\frac{2}{{{n^2}}} - 1}} = \frac{{3 + \lim \frac{2}{n}}}{{\lim \frac{2}{{{n^2}}} - 1}} = \frac{3}{{ - 1}} = - 3\)
Chọn D
\(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}}\) bằng
A. \(\frac{1}{2}\).
B. 1.
C. 2.
D. \( + \infty \).
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \)
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết:
\(\lim \frac{{\sqrt {4{n^2} + 4n + 1} }}{{4n + 1}} = \lim \frac{{\sqrt {4 + \frac{4}{n} + \frac{1}{{{n^2}}}} }}{{4 + \frac{1}{n}}} = \frac{{\sqrt {4 + \lim \frac{4}{n} + \lim \frac{1}{{{n^2}}}} }}{{4 + \lim \frac{1}{n}}} = \frac{{\sqrt 4 }}{4} = \frac{1}{2}\)
Chọn A.
\(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng
A. \(\frac{2}{3}\).
B. 1.
C. \(\frac{1}{4}\).
D. 2.
\(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}}\) bằng
A. \(\frac{2}{3}\).
B. 1.
C. \(\frac{1}{4}\).
D. 2.
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\), nếu \({u_n} \ge 0\;\forall n \in \mathbb{N}*\) thì \(a \ge 0\) và \(\lim \sqrt {{u_n}} = \sqrt a \)
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết:
\(\lim \frac{{2n + 1}}{{\sqrt {9{n^2} + 1} - n}} = \lim \frac{{2 + \frac{1}{n}}}{{\sqrt {9 + \frac{1}{{{n^2}}}} - 1}} = \frac{{2 + \lim \frac{1}{n}}}{{\sqrt {9 + \lim \frac{1}{{{n^2}}}} - 1}} = \frac{2}{{\sqrt 9 - 1}} = 1\)
Chọn B
Cho hai dãy số \(\left( {{u_n}} \right)\) và \[\left( {{v_n}} \right)\] thỏa mãn \(\lim {u_n} = 4,\lim \left( {{v_n} - 3} \right) = 0\). \(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right]\) bằng
A. 7.
B. 12.
C. 4.
D. 28.
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim c = c\) (c là hằng số)
Lời giải chi tiết:
\(\lim \left( {{v_n} - 3} \right) = 0 \Rightarrow \lim {v_n} - 3 = 0 \Rightarrow \lim {v_n} = 3\)
\(\lim \left[ {{u_n}\left( {{u_n} - {v_n}} \right)} \right] = \lim \left( {u_n^2 - {u_n}{v_n}} \right) = \lim u_n^2 - \lim \left( {{u_n}{v_n}} \right) = {4^2} - 3.4 = 4\)
Chọn C
\(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}}\) bằng
A. \(\frac{1}{2}\).
B. 1.
C. 4.
D. 0.
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết:
\(\lim \frac{{{4^n}}}{{{{2.4}^n} + {3^n}}} = \lim \frac{1}{{2 + {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{{2 + \lim {{\left( {\frac{3}{4}} \right)}^n}}} = \frac{1}{2}\)
Chọn A
\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}}\) bằng
A. \(\frac{3}{2}\).
B. \(\frac{1}{2}\).
C. 1.
D. \( - \frac{1}{2}\).
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{2x - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{2\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{x + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\)
Chọn A
\(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}}\) bằng
A. 0.
B. \( + \infty \).
C. 2.
D. 8.
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\)
+ Nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f\left( x \right)} = \sqrt L \).
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 1} \frac{{2x - 2}}{{\sqrt {x + 3} - 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{\left( {\sqrt {x + 3} - 2} \right)\left( {\sqrt {x + 3} + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)}}{{x - 1}}\)
\( = \mathop {\lim }\limits_{x \to 1} 2\left( {\sqrt {x + 3} + 2} \right) = 2\left( {\sqrt {1 + 3} + 2} \right) = 8\)
Chọn D
Biết \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) với a và b là hai số thực. Giá trị của \(a + b\) bằng
A. 1.
B. 2.
C. 4.
D. 5.
Phương pháp giải:
Sử dụng kiến thức về giới hạn hữu hạn của hàm số để tìm a, b.
Lời giải chi tiết:
Do \(\mathop {\lim }\limits_{x \to 1} \left( {x - 1} \right) = 0\) nên để tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + a}}{{x - 1}} = b\) thì \(\mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 3x + a} \right) = 0\) hay \(1 - 3 + a = 0 \Rightarrow a = 2\)
Do đó, \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) = 1 - 2 = - 1\) nên \(b = - 1\).
Suy ra: \(a + b = 2 - 1 = 1\)
Chọn A
Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}}\). Đặt \(a = \mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right)\) và \(b = \mathop {\lim }\limits_{x \to 3} f\left( x \right)\). Giá trị của \(a - 2b\) bằng
A. 0.
B. 9.
C. \( - 3\).
D. \( - 9\).
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ + } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
Cho \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ - } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to x_0^ + } c = c,\mathop {\lim }\limits_{x \to x_0^ - } c = c\) (với c là hằng số)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{x\left( {x - 3} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to {3^ + }} x = 3\) nên \(a = 3\)
\(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{{x^2} - 3x}}{{\left| {x - 3} \right|}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{x\left( {x - 3} \right)}}{{ - x + 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \left( { - x} \right) = - 3\) nên \(b = - 3\)
Do đó, \(a - 2b = 3 - 2\left( { - 3} \right) = 9\)
Chọn B
Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2,\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4\). Giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}}\) bằng
A. \( - 1\).
B. 0.
C. \(\frac{1}{2}\).
D. \( - \frac{1}{2}\).
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\)).
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) + 2g\left( x \right)} \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = 4 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{{4 - 2}}{2} = 1\)
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right) - 2g\left( x \right)}}{{f\left( x \right) + 2g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - 2\mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right]}} = \frac{{2 - 2.1}}{4} = 0\)
Chọn B
Biết rằng \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\). Giá trị của a là
A. \(\frac{3}{4}\).
B. 6.
C. \(\frac{3}{2}\).
D. 3.
Phương pháp giải:
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) với \(M \ne 0\), nếu \(f\left( x \right) \ge 0\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\) thì \(L \ge 0\) và \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {f\left( x \right)} = \sqrt L \).
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2a}}{{\sqrt {1 + \frac{a}{x}} + 1}} = \frac{{2a}}{2} = a\)
Mà \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2ax}}{{\sqrt {{x^2} + ax} + x}} = 3\) nên \(a = 3\)
Chọn D
\(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{{1 - 3x}}{{x + 2}}\) bằng
A. \( + \infty \).
B. \( - \infty \).
C. \( - 3\).
D. \(\frac{7}{4}\).
Phương pháp giải:
Sử dụng kiến thức về giới hạn một bên của hàm số để tính: Nếu \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L > 0\) và \(\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = - \infty \) thì \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right).g\left( x \right)} \right] = - \infty \).
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{1}{{x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to - {2^ - }} \left( {1 - 3x} \right) = 1 - 3.\left( { - 2} \right) = 7 > 0\)
Do đó, \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{1 - 3x}}{{x + 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \left[ {\left( {1 - 3x} \right)\frac{1}{{x + 2}}} \right] = - \infty \)
Chọn B
Biết rằng hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{2 - \sqrt {x + 1} }}{{x - 3}}\;\;khi\;x \ne 3\\\;\;\;\;\;\;\;a\;\;\;\;\;\;\;\;\,khi\;x = 3\end{array} \right.\) liên tục tại điểm \(x = 3\). Giá trị của a bằng
A. \( - \frac{1}{4}\).
B. \(\frac{1}{4}\).
C. \( - 2\).
D. 3.
Phương pháp giải:
Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Hàm số f(x) có tập xác định \(D = \left[ { - 1;3} \right) \cup \left( {3; + \infty } \right)\) chứa điểm 3.
Ta có: \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {2 - \sqrt {x + 1} } \right)\left( {2 + \sqrt {x + 1} } \right)}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to 3} \frac{{3 - x}}{{\left( {x - 3} \right)\left( {2 + \sqrt {x + 1} } \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{2 + \sqrt {x + 1} }} = \frac{{ - 1}}{{2 + \sqrt {3 + 1} }} = \frac{{ - 1}}{4}\)
Để f(x) liên tục tại \(x = 3\) thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Rightarrow a = \frac{{ - 1}}{4}\)
Chọn A
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\tan x\;\;\;\;\;\;\,khi\;0 < x \le \frac{\pi }{4}\\k - \cot x\;\,khi\;\frac{\pi }{4} < x \le \frac{\pi }{2}\end{array} \right.\) liên tục tại trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\). Giá trị của k bằng
A. 0.
B. 1.
C. 2.
D. \(\frac{\pi }{2}\).
Phương pháp giải:
+ Sử dung kiến thức về hàm số liên tục trên một đoạn để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên đoạn \(\left[ {a;b} \right]\). Hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) nếu f(x) liên tục trên khoảng (a; b) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).
+ Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm k: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Để hàm số f(x) liên tục trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) thì hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\), \(x = 0\) và \(x = \frac{\pi }{2}\).
Hàm số f(x) liên tục tại \(x = \frac{\pi }{4}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{4}} \right)\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ - }} \left( {\tan x} \right) = \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{4}} \right)}^ + }} \left( {k - \cot x} \right) = \tan \frac{\pi }{4}\)
\( \Leftrightarrow \tan \frac{\pi }{4} = k - \cot \frac{\pi }{4} \Leftrightarrow k - 1 = 1 \Leftrightarrow k = 2\)
Hàm số f(x) liên tục tại \(x = 0\) khi \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \tan 0 = \tan 0\) (luôn đúng)
Hàm số f(x) liên tục tại \(x = \frac{\pi }{2}\) khi \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) \Leftrightarrow \mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ - }} \left( {k - \cot \frac{\pi }{2}} \right) = k - \cot \frac{\pi }{2}\) \( \Leftrightarrow k - \cot \frac{\pi }{2} = k - \cot \frac{\pi }{2}\) (luôn đúng)
Vậy \(k = 2\).
Chọn C
Biết rằng phương trình \({x^3} - 2x - 3 = 0\) chỉ có một nghiệm. Phương trình này có nghiệm trong khoảng nào sau đây?
A. \(\left( { - 1;0} \right)\).
B. \(\left( {0;1} \right)\).
C. \(\left( {1;2} \right)\).
D. \(\left( {2;3} \right)\).
Phương pháp giải:
Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).
Lời giải chi tiết:
Xét hàm số \(f\left( x \right) = {x^3} - 2x - 3\), f(x) liên tục trên \(\mathbb{R}\).
Ta có: \(f\left( 1 \right) = {1^3} - 2.1 - 3 = 1 - 2 - 3 = - 4\), \(f\left( 2 \right) = {2^3} - 2.2 - 3 = 8 - 4 - 3 = 1\)
Vì \(f\left( 1 \right).f\left( 2 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nghiệm một nghiệm trong khoảng \(\left( {1;2} \right)\).
Chọn C
Bài viết này cung cấp lời giải chi tiết và phân tích chuyên sâu cho các câu hỏi trắc nghiệm trong sách bài tập Toán 11 Chân trời sáng tạo tập 1, trang 91, 92 và 93. Mục tiêu là giúp học sinh hiểu rõ bản chất của từng bài toán, rèn luyện kỹ năng giải quyết vấn đề và chuẩn bị tốt nhất cho các kỳ thi sắp tới.
Trước khi đi vào giải chi tiết, chúng ta cùng điểm qua những kiến thức trọng tâm được đề cập trong chương học này. Chương này tập trung vào các chủ đề như hàm số bậc hai, đồ thị hàm số bậc hai, và ứng dụng của hàm số bậc hai trong việc giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và định lý liên quan là điều kiện tiên quyết để giải quyết thành công các bài tập trắc nghiệm.
Trong chương này, các em sẽ thường xuyên gặp các dạng bài tập sau:
Để giải các bài tập trắc nghiệm Toán 11 một cách nhanh chóng và chính xác, các em có thể áp dụng một số mẹo sau:
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức:
Hy vọng rằng bài viết này đã cung cấp cho các em những kiến thức và kỹ năng cần thiết để giải quyết thành công các câu hỏi trắc nghiệm Toán 11 trang 91, 92, 93 sách bài tập Chân trời sáng tạo tập 1. Chúc các em học tập tốt và đạt kết quả cao trong các kỳ thi sắp tới!