Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 4 trang 19 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Chứng minh các đẳng thức lượng giác sau: a) \(4\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) = \cos 3x\);
Đề bài
Chứng minh các đẳng thức lượng giác sau:
a) \(4\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) = \cos 3x\);
b) \(\frac{{\sin 2x\cos x}}{{\left( {1 + \cos x} \right)\left( {1 + \cos 2x} \right)}} = \tan \frac{x}{2}\);
c) \(\sin x\left( {1 + 2\cos 2x + 2\cos 4x + 2\cos 6x} \right) = \sin 7x\);
d) \(\frac{{{{\sin }^2}3x}}{{{{\sin }^2}x}} - \frac{{{{\cos }^2}3x}}{{{{\cos }^2}x}} = 8\cos 2x\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về các công thức lượng giác:
a) \(\cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\)
b) \(\sin 2\alpha = 2\sin \alpha \cos \alpha ,\cos 2\alpha = 2{\cos ^2}\alpha - 1\)
c) \(\sin \alpha \cos \beta = \frac{1}{2}\left[ {\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)} \right]\)
d) \(\sin \left( {\alpha - \beta } \right) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \), \(\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \), \(\sin 2\alpha = 2\sin \alpha \cos \alpha \)
Lời giải chi tiết
a) \(4\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) \) \( = 2\cos x\left( {\cos \frac{{2\pi }}{3} + \cos 2x} \right)\)
\( \) \( = 2\cos x.\cos 2x + 2.\frac{{ - 1}}{2}\cos x \) \( = \cos 3x + \cos x - \cos x \) \( = \cos 3x\)
b) \(\frac{{\sin 2x\cos x}}{{\left( {1 + \cos x} \right)\left( {1 + \cos 2x} \right)}} \) \( = \frac{{2\sin x{{\cos }^2}x}}{{\left( {1 + \cos x} \right)\left( {1 + 2{{\cos }^2}x - 1} \right)}} \) \( = \frac{{2\sin x{{\cos }^2}x}}{{\left( {1 + \cos x} \right)2{{\cos }^2}x}}\)
\( \) \( = \frac{{\sin x}}{{1 + \cos x}} \) \( = \frac{{2\sin \frac{x}{2}\cos \frac{x}{2}}}{{1 + 2{{\cos }^2}\frac{x}{2} - 1}} \) \( = \frac{{2\sin \frac{x}{2}\cos \frac{x}{2}}}{{2{{\cos }^2}\frac{x}{2}}} \) \( = \tan \frac{x}{2}\)
c) \(\sin x\left( {1 + 2\cos 2x + 2\cos 4x + 2\cos 6x} \right)\)
\( \) \( = \sin x + 2\sin x\cos 2x + 2\sin x\cos 4x + 2\sin x\cos 6x\)
\( \) \( = \sin x + \sin 3x - \sin x + \sin 5x - \sin 3x + \sin 7x - \sin 5x\)\( \) \( = \sin 7x\)
d) \(\frac{{{{\sin }^2}3x}}{{{{\sin }^2}x}} - \frac{{{{\cos }^2}3x}}{{{{\cos }^2}x}} \) \( = \frac{{{{\sin }^2}3x{{\cos }^2}x - {{\cos }^2}3x{{\sin }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}} \) \( = \frac{{{{\left( {\sin 3x\cos x} \right)}^2} - {{\left( {\cos 3x\sin x} \right)}^2}}}{{{{\sin }^2}x{{\cos }^2}x}}\)
\( \) \( = \frac{{\left( {\sin 3x\cos x + \cos 3x\sin x} \right)\left( {\sin 3x\cos x - \cos 3x\sin x} \right)}}{{{{\sin }^2}x{{\cos }^2}x}} \) \( = \frac{{\sin 4x\sin 2x}}{{\frac{1}{4}{{\sin }^2}2x}}\)
\( \) \( = \frac{{4\sin 4x}}{{\sin 2x}} \) \( = \frac{{8\sin 2x\cos 2x}}{{\sin 2x}} \) \( = 8\cos 2x\)
Bài 4 trang 19 sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán liên quan đến việc xác định phương trình parabol khi biết một số thông tin nhất định.
Bài 4 bao gồm các dạng bài tập sau:
Để giải quyết các bài tập này, học sinh cần nắm vững các công thức và phương pháp sau:
Ví dụ 1: Xác định phương trình parabol có đỉnh I(1, -2) và đi qua điểm A(3, 2).
Giải:
Phương trình parabol có dạng: y = a(x - 1)2 - 2. Thay tọa độ điểm A(3, 2) vào phương trình, ta có:
2 = a(3 - 1)2 - 2
2 = 4a - 2
4a = 4
a = 1
Vậy phương trình parabol là: y = (x - 1)2 - 2 = x2 - 2x - 1
Ví dụ 2: Xác định phương trình parabol đi qua ba điểm A(0, 1), B(1, 2), C(2, 5).
Giải:
Phương trình parabol có dạng: y = ax2 + bx + c. Thay tọa độ ba điểm A, B, C vào phương trình, ta có hệ phương trình:
Thay c = 1 vào hai phương trình còn lại, ta có:
Giải hệ phương trình này, ta được a = 1, b = 0.
Vậy phương trình parabol là: y = x2 + 1
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Việc nắm vững các công thức và phương pháp giải bài tập về parabol là rất quan trọng trong chương trình Toán 11. Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích và giúp bạn tự tin hơn trong việc giải quyết các bài tập liên quan đến hàm số bậc hai.