Bài 4 trang 117 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh tính đạo hàm, tìm cực trị, và vẽ đồ thị hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4 trang 117, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. a) Tìm các giao tuyến: \({d_1} = \left( {SAB} \right) \cap \left( {SCD} \right),{d_2} = \left( {SCD} \right) \cap \left( {MAB} \right)\). b) Chứng minh \({d_1}//{d_2}\).
Đề bài
Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD.
a) Tìm các giao tuyến: \({d_1} = \left( {SAB} \right) \cap \left( {SCD} \right),{d_2} = \left( {SCD} \right) \cap \left( {MAB} \right)\).
b) Chứng minh \({d_1}//{d_2}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về tính chất cơ bản về hai đường thẳng song song để tìm giao tuyến: Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
b) Sử dụng kiến thức về tính chất cơ bản về hai đường thẳng song song để chứng minh: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.
Lời giải chi tiết
a) Vì ABCD là hình thang có đáy lớn AB nên AB//CD.
Mà S là điểm chung của hai mặt phẳng (SAB) và (SCD), \(AB \subset \left( {SAB} \right),DC \subset \left( {SDC} \right)\), nên giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng \({d_1}\) qua S, song song với AB và CD.
Vì AB//CD, \(AB \subset \left( {MAB} \right),DC \subset \left( {SDC} \right)\) và M là điểm chung của hai mặt phẳng (MAB) và (SCD), nên giao tuyến của hai mặt phẳng (MAB) và (SCD) là đường thẳng \({d_2}\) qua M, song song với AB và CD.
b) Vì \({d_1}//AB,{d_2}//AB\) nên \({d_1}//{d_2}\).
Bài 4 trong sách bài tập Toán 11 Chân trời sáng tạo tập 1 tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Cụ thể, bài toán yêu cầu học sinh phân tích hàm số, tìm điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng cho việc học tập các chương trình Toán học nâng cao hơn.
Bài 4 thường bao gồm một hàm số cụ thể, và yêu cầu học sinh thực hiện các bước sau:
Để giải bài 4 trang 117 một cách hiệu quả, chúng ta cần thực hiện theo các bước sau:
Giả sử hàm số được cho là f(x) = x3 - 3x2 + 2. Tập xác định của hàm số là D = ℝ (tập hợp tất cả các số thực).
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2 là các điểm tới hạn.
Xét các khoảng:
Tại x = 0, f'(x) đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là f(0) = 2.
Tại x = 2, f'(x) đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = -2.
Dựa trên các thông tin đã tìm được, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2. Đồ thị hàm số có cực đại tại điểm (0, 2) và cực tiểu tại điểm (2, -2). Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).
Việc giải bài 4 trang 117 không chỉ giúp học sinh nắm vững kiến thức về đạo hàm mà còn có ứng dụng thực tế trong nhiều lĩnh vực như kinh tế, kỹ thuật, và khoa học tự nhiên. Ví dụ, trong kinh tế, đạo hàm có thể được sử dụng để tính toán chi phí biên, doanh thu biên, và lợi nhuận biên. Trong kỹ thuật, đạo hàm có thể được sử dụng để tối ưu hóa thiết kế và hiệu suất của các hệ thống.
Bài 4 trang 117 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Bằng cách thực hiện theo các bước giải chi tiết và lưu ý các điểm quan trọng, học sinh có thể tự tin giải quyết bài toán này và các bài toán tương tự.