Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 39 trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2. Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn, vì vậy giaitoan.edu.vn luôn cố gắng mang đến những giải pháp tối ưu nhất.
Mục tiêu của chúng tôi là giúp các em học sinh nắm vững kiến thức, rèn luyện kỹ năng giải bài tập và đạt kết quả tốt nhất trong môn Toán.
Gọi (C) là đồ thị của hàm số (y = {x^3} - 2{x^2} + 1). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó
Đề bài
Gọi (C) là đồ thị của hàm số \(y = {x^3} - 2{x^2} + 1\). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó
a) Song song với đường thẳng \(y = - x + 2\);
b) Vuông góc với đường thẳng \(y = - \frac{1}{4}x - 4\);
c) Đi qua điểm A(0; 1).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:
Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).
Tiếp tuyến \({M_0}T\) có phương trình là: \(y - y\left( {{x_0}} \right) = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)
Lời giải chi tiết
Với \({x_0}\) bất kì ta có: \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2{x^2} + 1 - x_0^3 + 2x_0^2 - 1}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - x_0^3} \right) - 2\left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2{x_0} - 2x} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2{x_0} - 2x} \right) = x_0^2 + x_0^2 + x_0^2 - 4{x_0} = x_0^2 + x_0^2 + x_0^2 - 4{x_0} = 3x_0^2 - 4{x_0}\)
Vậy \(y'\left( x \right) = 3{x^2} - 4x\)
a) Tiếp tuyến tại điểm \({x_0}\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)
Vì tiếp tuyến của đồ thị hàm số (C) song song với đường thẳng \(y = - x + 2\) nên \(f'\left( {{x_0}} \right) = - 1 \Leftrightarrow 3x_0^2 - 4{x_0} + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{1}{3}\\{x_0} = 1\end{array} \right.\)
Ta có: \(y\left( 1 \right) = 0,y\left( {\frac{1}{3}} \right) = \frac{{22}}{{27}}\)
Tiếp tuyến của đồ thị hàm số tại điểm \(x = 1\) là:
\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \left( { - 1} \right)\left( {x - 1} \right) = - x + 1\)
Tiếp tuyến của đồ thị hàm số tại điểm \(x = \frac{1}{3}\) là:
\(y = y'\left( {\frac{1}{3}} \right)\left( {x - \frac{1}{3}} \right) + y\left( {\frac{1}{3}} \right) = \left( { - 1} \right)\left( {x - \frac{1}{3}} \right) + \frac{{22}}{{27}} = - x + \frac{{31}}{{27}}\)
b) Tiếp tuyến tại điểm \({x_0}\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)
Vì tiếp tuyến của đồ thị hàm số (C) vuông góc với đường thẳng \(y = - \frac{1}{4}x + 2\) nên \(f'\left( {{x_0}} \right) = 4 \Leftrightarrow 3x_0^2 - 4{x_0} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 2}}{3}\\{x_0} = 2\end{array} \right.\)
Lại có \(y\left( 2 \right) = 1,y\left( {\frac{{ - 2}}{3}} \right) = \frac{{ - 5}}{{27}}\)
Tiếp tuyến của đồ thị hàm số tại điểm \(x = 2\) là:
\(y = y'\left( 2 \right)\left( {x - 2} \right) + y\left( 2 \right) = 4\left( {x - 2} \right) + 1 = 4x - 7\)
Tiếp tuyến của đồ thị hàm số tại điểm \(x = \frac{{ - 2}}{3}\) là:
\(y = y'\left( {\frac{{ - 2}}{3}} \right)\left( {x + \frac{2}{3}} \right) + y\left( {\frac{{ - 2}}{3}} \right) = 4\left( {x + \frac{2}{3}} \right) + \frac{{ - 5}}{{27}} = 4x + \frac{{67}}{{27}}\)
c) Tiếp tuyến đi qua điểm A(0;1) tại điểm \({x_0}\) có phương trình là:
\(y - y\left( {{x_0}} \right) = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) \Leftrightarrow y = \left( {3x_0^2 - 4{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 2x_0^2 + 1\)
Vì tiếp tuyến đi qua điểm A(0;1) nên:
\(1 = \left( {3x_0^2 - 4{x_0}} \right)\left( {0 - {x_0}} \right) + x_0^3 - 2x_0^2 + 1\)\( \Leftrightarrow - 3x_0^3 + 4x_0^2 + x_0^3 - 2x_0^2 = 0\)
\( \Leftrightarrow - 2x_0^3 + 2x_0^2 = 0 \Leftrightarrow 2x_0^2\left( {{x_0} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = 0\end{array} \right.\)
Với \({x_0} = 1\) thì \(y'\left( 1 \right) = {3.1^2} - 4.1 = - 1,y\left( 1 \right) = 0\). Khi đó, tiếp tuyến của (C) cần tìm là: \(y = y'\left( 1 \right).\left( {x - 1} \right) + y\left( 1 \right) = \left( { - 1} \right)\left( {x - 1} \right) + 0 = - x + 1\)
Với \({x_0} = 0\) thì \(f'\left( 0 \right) = {3.0^2} - 4.0 = 0,f\left( 0 \right) = 1\). Khi đó, tiếp tuyến của (C) cần tìm là: \(y = y'\left( 0 \right).\left( {x - 0} \right) + y\left( 0 \right) = 0\left( {x - 0} \right) + 1 = 1\)
Bài 4 trang 39 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách vẽ đồ thị hàm số và giải các bài toán liên quan đến ứng dụng của hàm số lượng giác trong thực tế.
Để giải quyết bài 4 trang 39 một cách hiệu quả, trước tiên chúng ta cần nắm vững các kiến thức cơ bản sau:
Bài 4 thường bao gồm nhiều câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể. Dưới đây là hướng dẫn giải chi tiết từng phần của bài 4:
Ví dụ: Câu a yêu cầu xác định tập xác định của hàm số f(x) = sin(x). Lời giải: Tập xác định của hàm số sin(x) là tập R (tất cả các số thực).
Ví dụ: Câu b yêu cầu tìm giá trị của hàm số f(x) = cos(x) tại x = π/3. Lời giải: f(π/3) = cos(π/3) = 1/2.
Ví dụ: Câu c yêu cầu vẽ đồ thị hàm số f(x) = tan(x). Lời giải: Đồ thị hàm số tan(x) có các đường tiệm cận đứng tại x = π/2 + kπ (k là số nguyên). Đồ thị hàm số tan(x) có tính tuần hoàn với chu kỳ π.
Để giúp các em hiểu rõ hơn về cách giải bài 4 trang 39, chúng ta cùng xem xét một ví dụ minh họa sau:
Bài toán: Cho hàm số f(x) = 2sin(x) + 1. Tìm tập giá trị của hàm số.
Lời giải: Vì -1 ≤ sin(x) ≤ 1, nên -2 ≤ 2sin(x) ≤ 2. Do đó, -1 ≤ 2sin(x) + 1 ≤ 3. Vậy tập giá trị của hàm số f(x) là [-1, 3].
Khi giải bài 4 trang 39, các em cần lưu ý những điều sau:
Để rèn luyện kỹ năng giải bài tập về hàm số lượng giác, các em có thể làm thêm các bài tập tương tự sau:
Bài 4 trang 39 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp các em củng cố kiến thức về hàm số lượng giác và đồ thị. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!