Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 1 trang 73 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 73 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:

a) SB và (ABCD);

b) SC và (ABCD);

c) SD và (ABCD);

d) SB và (SAC).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính:

+ Nếu đường thẳng a vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a với (P) bằng \({90^0}\).

+ Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a và hình chiếu a’ của a trên (P) gọi là góc giữa đường thẳng a và (P).

Lời giải chi tiết

Giải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Vì \(SA \bot \left( {ABCD} \right)\) nên A là hình chiếu của S trên mặt phẳng (ABCD).

a) Ta có: \(\left( {SB,\left( {ABCD} \right)} \right) \) \( = \left( {SB,AB} \right) \) \( = \widehat {SBA}\)

Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AB\). Do đó, tam giác SBA vuông tại A.

Suy ra: \(\tan \widehat {SBA} \) \( = \frac{{SA}}{{AB}} \) \( = \frac{{a\sqrt 3 }}{a} \) \( = \sqrt 3 \) \( \Rightarrow \widehat {SBA} \) \( = {60^0}\)

b) Ta có: \(\left( {SC,\left( {ABCD} \right)} \right) \) \( = \left( {SC,AC} \right) \) \( = \widehat {SCA}\)

Vì ABCD là hình vuông nên tam giác ACD vuông tại D.

Suy ra: \(AC \) \( = \sqrt {A{D^2} + D{C^2}} \) \( = a\sqrt 2 \) (định lí Pythagore)

Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AC\). Do đó, tam giác SCA vuông tại A.

Suy ra: \(\tan \widehat {SCA} \) \( = \frac{{SA}}{{AC}} \) \( = \frac{{a\sqrt 3 }}{{a\sqrt 2 }} \) \( = \frac{{\sqrt 6 }}{2} \) \( \Rightarrow \widehat {SCA} \) \( = 50,{8^0}\)

c) Ta có: \(\left( {SD,\left( {ABCD} \right)} \right) \) \( = \left( {SD,AD} \right) \) \( = \widehat {SDA}\)

Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AD\). Do đó, tam giác SDA vuông tại A.

Suy ra: \(\tan \widehat {SDA} \) \( = \frac{{SA}}{{AD}} \) \( = \frac{{a\sqrt 3 }}{a} \) \( = \sqrt 3 \) \( \Rightarrow \widehat {SDA} \) \( = {60^0}\)

d) Vì ABCD là hình vuông nên \(BO \bot AC\)

Mà \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot BO\) nên \(BO \bot \left( {SAC} \right)\)

Do đó, O là hình chiếu của B trên mặt phẳng (SAC)

Do đó, \(\left( {SB,\left( {SAC} \right)} \right) \) \( = \left( {SB,SO} \right) \) \( = \widehat {BSO}\)

Tam giác SAB vuông tại A nên \(SB \) \( = \sqrt {A{B^2} + S{A^2}} \) \( = \sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}} \) \( = 2a\) (định lí Pythagore)

Vì ABCD là hình vuông nên \(OB \) \( = \frac{1}{2}AC \) \( = \frac{{a\sqrt 2 }}{2}\)

Tam giác SBO vuông tại O nên \(\sin \widehat {BSO} \) \( = \frac{{OB}}{{SB}} \) \( = \frac{{a\sqrt 2 }}{{2.2a}} \) \( = \frac{{\sqrt 2 }}{4} \) \( \Rightarrow \widehat {BSO} \approx 20,{7^0}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 73 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 1 trang 73 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định hệ số góc của tiếp tuyến của đồ thị hàm số tại một điểm.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi.

Phương pháp giải bài tập

Để giải bài 1 trang 73 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 được định nghĩa là giới hạn của tỷ số \frac{f(x) - f(x_0)}{x - x_0}\ khi x tiến tới x0.
  2. Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp.
  3. Các đạo hàm cơ bản: Biết đạo hàm của các hàm số cơ bản như x^n, sin(x), cos(x), tan(x),...

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x^2 + 3x - 2 tại điểm x = 1.

Giải:

Áp dụng định nghĩa đạo hàm, ta có:

f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{(x^2 + 3x - 2) - (1^2 + 3(1) - 2)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 3x - 2 - 2}{x - 1} = \lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 4)}{x - 1} = \lim_{x \to 1} (x + 4) = 1 + 4 = 5

Vậy, đạo hàm của hàm số f(x) = x^2 + 3x - 2 tại điểm x = 1 là 5.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng đúng các công thức và quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 11 - Chân trời sáng tạo tập 2 hoặc tìm kiếm trên các trang web học toán online.

Kết luận

Bài 1 trang 73 sách bài tập Toán 11 - Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả.

Công thứcMô tả
\frac{d}{dx} (c) = 0Đạo hàm của hằng số bằng 0
\frac{d}{dx} (x^n) = nx^{n-1}Đạo hàm của lũy thừa
\frac{d}{dx} (f(x) + g(x)) = f'(x) + g'(x)Đạo hàm của tổng

Tài liệu, đề thi và đáp án Toán 11